ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • American Geophysical Union  (1)
  • CORDAP  (1)
  • American Physical Society (APS)
  • National Academy of Sciences
  • 1
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  Professional Paper, Flow and Fracture of Rocks, Washington, D. C., American Geophysical Union, vol. 16, no. 16, pp. 167-190, (ISBN 1-86239-165-3, vi + 330 pp.)
    Publication Date: 1972
    Keywords: Physical properties of rocks ; Seismology ; Anisotropy ; earth mantle ; ConvolutionE
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-10-26
    Description: Experts release a roadmap for harnessing the potential of assisted evolution to help save corals. The IPCC predicts that if warming reaches 2°C, 99% of all coral reefs will be lost in less than 30 years. It is clear that to ensure the future of corals, the highest priority must be reducing global greenhouse gas emissions. However, even with swift and substantial reductions in emissions, corals will continue to face increasing temperatures for the foreseeable future, which can result in extensive coral mortality and local extinction of some coral species. While recent studies have shown that corals may exhibit some degree of adaptation to ocean warming, it is unclear whether corals are able to survive the rate of temperature change during heat waves that will become more frequent under several climate change scenarios. If corals lack what it takes to naturally rapidly adapt to new environmental regimes, they may fail to survive a warming ocean. This is where assisted evolution could be a game-changer. Growing our understanding of the power of adaptation In January 2023, we held a workshop on assisted evolution co-organized with the Australian Institute of Marine Sciences (AIMS) as part of CORDAP’s Scoping Studies (a series of planning sessions and technology roadmap studies to shape our funding priorities). Our aim was to develop a visionary roadmap, offering recommendations on how to prioritise assisted evolution in R&D investment in the future. Assisted evolution is the use of human interventions to speed up the natural evolutionary process. It may allow coral species to adapt faster than they would if left unaided, allowing reefs and corals to keep better pace with the ocean’s environmental changes. The first step in creating this strategy was to pinpoint where we are now in our understanding regarding the potential and impacts of assisted evolution on enhancing coral tolerance to stress conditions like ocean warming. Our experts unanimously agreed that assisted evolution methods cannot be understood and evaluated without a solid foundational understanding of natural adaptation, and identified some knowledge gaps that can be closed with relatively minimal effort and others that will require substantial investment of time and resources. Key Findings: - Standardising methods, experimental designs, species selection guidelines, and terminologies will help to understand natural adaptation and assisted evolution more rapidly. - Long-term funding is critical to facilitate multigenerational studies, which are needed to deliver essential but largely missing information about coral evolution. Building the best pathway for research and investment This roadmap sets out tangible recommendations for future investment and research, to help fill critical knowledge gaps that could assist natural adaptation and evolution of coral reefs in a warming world. Overall, the roadmap recommends investment in a mixed portfolio of R&D, ranging from technologies with lower perceived risks to those with higher percieved risks and longer R&D horizons. This strategy is advised because of the uncertainty around future heating trajectories and thus requirements for enhancement of tolerance. The roadmap outlined four main areas of work that need to be undertaken: 1. Leading global coordination and synthesis. Recommendation: Building global infrastructure to support research would dramatically accelerate the generation of knowledge around the natural and assisted evolution of corals. This could include compiling and committing to a set of standards and methods that will allow more studies to be used in predictive models, as well as establishing a global resource-sharing network and database to facilitate meta-analysis and synthesis. 2. Optimising generation and use of knowledge. Recommendation: Make sure new studies are well designed and timely. Optimize published and future studies by characterizing relationships between heat stress metrics and other facets of coral fitness. Having funding set aside to be able to quickly respond to bleaching events will ensure vital knowledge is captured rather than lost if and when those events occur. 3. Filling critical knowledge gaps in multigenerational coral data in the laboratory and field. Recommendation: Given the slow-growing nature of coral, longer-term funding would allow researchers to gain critical knowledge needed to estimate the multi-generational benefits and risks of implementing assisted evolution methods in the wild. Standardised approaches repeated in different parts of the world would add confidence to generalise those results. 4. Supporting the advance of existing and new technologies. Recommendation: Methods that may yield a larger effect (e.g., gene editing, hybridisation between species, and assisted migration) are also potentially of greater risk and would need considerable R&D. Expanding support for some of the riskier long-term projects currently being overlooked, could potentially offer a greater return on investment, but should be balanced with continued investment in less risky technologies. CORDAP will be using these recommendations to prepare new accelerator program and we believe that they will assist academia in understanding gaps and needs for future research as well as helping to guide funding agencies on where their money will be most effective. The roadmap identifies the funding structures and research priorities that are most likely to yield the knowledge needed to ensure that assisted evolution methods can be implemented effectively. Ultimately, conserving and restoring coral reefs in warming climates will require an inclusive infrastructure involving many partners at a local, national, and international level.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Significance Assessing change in Southern Ocean ecosystems is challenging due to its remoteness. Large-scale datasets that allow comparison between present-day conditions and those prior to large-scale ecosystem disturbances caused by humans (e.g., fishing/whaling) are rare. We infer the contemporary offshore foraging distribution of a marine predator, southern right whales (n = 1,002), using a customized stable isotope-based assignment approach based on biogeochemical models of the Southern Ocean. We then compare the contemporary distributions during the late austral summer and autumn to whaling catch data representing historical distributions during the same seasons. We show remarkable consistency of mid-latitude distribution across four centuries but shifts in foraging grounds in the past 30 y, particularly in the high latitudes that are likely driven by climate-associated alterations in prey availability. Abstract Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (〉60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (〉60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...