ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (4)
  • Stratification  (3)
  • Wiley-Blackwell  (4)
  • American Geophysical Union  (3)
  • American Geophysical Union (AGU)
  • American Meteorological Society (AMS)
  • Berlin: Deutsches Institut für Wirtschaftsforschung (DIW)
Collection
Publisher
  • Wiley-Blackwell  (4)
  • American Geophysical Union  (3)
  • American Geophysical Union (AGU)
  • American Meteorological Society (AMS)
  • Berlin: Deutsches Institut für Wirtschaftsforschung (DIW)
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 192 (1987), S. 27-42 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The fate and possible roles of the cytoskeleton in the process of conjugation in the hyptrich ciliate Euplotes aediculatus were investigated. Following the coalescence of the plasma membranes of the conjugant cells, a fusion zone or bridge of cytoplasm contributed by both partners is constructed. The sub-alveolar microtubule layers of the vegetative cell cortex remain in place to define the fusion zone boundaries after cell union. The initial fusion zone consists primarily of featureless ground cytoplasm; soon the ground plasm becomes crowded with microtubules and anastomosing smooth endoplasmic reticulum, which become displaced only late in conjugation as the migratory pronuclei are exchanged between partners. Fusion zone microtubules, functioning in some undetermined way, may be involved in the nuclear migration. Resorption of the posterior portion of each partner's buccal apparatus results in the degradation of the component cilia within acid phosphatase-positive autophagic bodies. Silver staining for light microscopy shows that the late fusion zone contracts forward from the posterior border, then constricts to separate the conjugants. In some separating pairs remnants of a microfilamentous assembly are seen at the posterior edge of the fusion zone; the full extent of this system may be masked by partial degradation due to osmium tetroxide fixation. Treatment of conjugants for 6 hours with cytochalasin B prevents separation, possibly through inhibition of the actin-like microfilament assembly in the fusion zone. The observations and experiments favor a model of cell separation following conjugation in which the fusion zone is resorbed by motile or contractile processes occurring within or around the fusion bridge itself.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 192 (1987), S. 43-61 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The formation and subsequent dissolution of a common bridge of cytoplasm between conjugating ciliated protozoan cells provides an excellent opportunity to follow the dynamics of the cellular membrane systems involved in this process. In particular, separation of conjugant partners offers the chance to observe, at a fixed site on the cell surface, how the ciliate surface complex of plasma and alveolar membranes (collectively termed the “pellicle”) is constructed. Consequently, cortical and cellular membranes of Euplotes aediculatus were studied by light and electron microscopy through the conjugation sequence. A conjugant fusion zone of shared cytoplasm elaborates between the partner cells within their respective oral fields (peristomes) to include microtubules, cytosol, and a concentrated endoplasmic reticulum (heavily stained by osmium impregnation techniques) that may also be continuous with cortical ER of each cell. Cortical membranes displacd by fusion are autolyzed in acid phosphatase-positive lysosomes in the fusion zone. As conjugants separate, expansion of the plasma membrane may occur through the fusion of vesicles with the plasma membrane, presumably at bare membrane, presumably at bare membrane patches near the fusion zone. The underlying cortical alveolar membranes and their plate-like contents are reconstructed beneath the plasma membrane, apparently by multiple fusions of dense-cored alveolar precursor vesicles (APVs). These precursor vesicles themselves appear to condense directly from the smooth ER present in the fusion zone. No Golgi apparatus was visible in the fusion zone cytoplasm, and no step of APV maturation that might involve the Golgi complex was noted.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 124 (1985), S. 391-396 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The addition of human platelet-derived growth factor (PDGF) to confluent, quiescent cultures of human diploid fibroblasts induced the rapid breakdown of cellular polyphosphoinositides. The levels of 32P-labeled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol (PI) decreased by 30 to 40% within 1 min after exposure of the cells to PDGF. The levels of PIP and PIP2 returned to their initial values within 3 and 10 min, respectively, after PDGF addition. The level of PI continued to increase after it had returned to control values and was up threefold within 30 min after PDGF addition. In cells prelabeled with myo-[3H]inositol PDGF caused an eightfold increase in the levels of inositol trisphosphate (IP3) within 2 min. Lesser increases, twofold and 1.3-fold, respectively, were seen in levels of inositol bisphosphate (IP2) and inositol monophosphate (IP). Within 10 min after PDGF addition the levels of all three inositol phosphates had decreased to control values. The levels of IP3 measured 2 min after PDGF addition depended on the PDGF concentration and were maximal at 5-10 ng/ml of PDGF. Similar concentrations of PDGF stimulate maximal cell growth and DNA synthesis in these cells.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0192-253X
    Keywords: Transposable element ; Transcription factor ; Suppression ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We have used the yellow gene of Drosophila melanogaster as a model system in which to study the molecular mechanisms by which the gypsy retrotransposon causes mutant phenotypes that can be reversed by nonalleiic mutations at the suppressor of Hairy-wing locus. This gene encodes a 109,000 dalton protein that contains an acidic domain and 12 copies of the Zn finger motif, which are characteristic of some transcription factors and DNA binding proteins. The suppressible y2 allele is caused by the insertion of the gypsy element at -700 bp from the start of transcription of the Yellow gene, resulting in a phenotype characterized by mouth parts and denticle belts in the larvae, and by bristles in the adults, that show wildtype coloration, but mutant wings and body cuticle in the adult flies. This phenotype is the result of the interaction of gypsy sequences homologous to mammalian enhancers with tissue-specific yellow transcriptional regulatory elements located upstream from the gypsy insertion site and responsible for the expression of the yellow gene in the mutated tissues. This interaction is dependent on the binding of the su(Hw) protein to the specific gypsy sequences involved in the induction of the mutant phenotype.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 37 (2010): L22607, doi:10.1029/2010GL045272.
    Description: Shear instability is the dominant mechanism for converting fluid motion to mixing in the stratified ocean and atmosphere. The transition to turbulence has been well characterized in laboratory settings and numerical simulations at moderate Reynolds number—it involves “rolling up”, i.e., overturning of the density structure within the cores of the instabilities. In contrast, measurements in an energetic estuarine shear zone reveal that the mixing induced by shear instability at high Reynolds number does not primarily occur by overturning in the cores; rather it results from secondary shear instabilities within the zones of intensified shear separating the cores. This regime is not likely to be observed in the relatively low Reynolds number flows of the laboratory or in direct numerical simulations, but it is likely a common occurrence in the ocean and atmosphere.
    Description: This research was supported by NSF grant OCE‐0824871 and ONR grant N00014‐0810495.
    Keywords: Stratification ; Turbulence ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C10013, doi:10.1029/2012JC008124.
    Description: Analyses of field observations and numerical model results have identified that sediment transport in the Hudson River estuary is laterally segregated between channel and shoals, features frontal trapping at multiple locations along the estuary, and varies significantly over the spring-neap tidal cycle. Lateral gradients in depth, and therefore baroclinic pressure gradient and stratification, control the lateral distribution of sediment transport. Within the saline estuary, sediment fluxes are strongly landward in the channel and seaward on the shoals. At multiple locations, bottom salinity fronts form at bathymetric transitions in width or depth. Sediment convergences near the fronts create local maxima in suspended-sediment concentration and deposition, providing a general mechanism for creation of secondary estuarine turbidity maxima at bathymetric transitions. The lateral bathymetry also affects the spring-neap cycle of sediment suspension and deposition. In regions with broad, shallow shoals, the shoals are erosional and the channel is depositional during neap tides, with the opposite pattern during spring tides. Narrower, deeper shoals are depositional during neaps and erosional during springs. In each case, the lateral transfer is from regions of higher to lower bed stress, and depends on the elevation of the pycnocline relative to the bed. Collectively, the results indicate that lateral and along-channel gradients in bathymetry and thus stratification, bed stress, and sediment flux lead to an unsteady, heterogeneous distribution of sediment transport and trapping along the estuary rather than trapping solely at a turbidity maximum at the limit of the salinity intrusion.
    Description: This research was funded by a grant from the Hudson River Foundation (#002/07A). D.R. was partially supported by the Office of Naval Research (N00014-08-1-0846).
    Description: 2013-04-17
    Keywords: Estuarine turbidity maximum ; Lateral sediment distribution ; Salinity fronts ; Sediment flux ; Sediment trapping ; Stratification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4784-4802, doi: 10.1029/2019JC015006.
    Description: Modifications for navigation since the late 1800s have increased channel depth (H) in the lower Hudson River estuary by 10–30%, and at the mouth the depth has more than doubled. Observations along the lower estuary show that both salinity and stratification have increased over the past century. Model results comparing predredging bathymetry from the 1860s with modern conditions indicate an increase in the salinity intrusion of about 30%, which is roughly consistent with the H5/3 scaling expected from theory for salt flux dominated by steady exchange. While modifications including a recent deepening project have been concentrated near the mouth, the changes increase salinity and threaten drinking water supplies more than 100 km landward. The deepening has not changed the responses to river discharge (Qr) of the salinity intrusion (~Qr−1/3) or mean stratification (Qr2/3). Surprisingly, the increase in salinity intrusion with channel deepening results in almost no change in the estuarine circulation. This contrasts sharply with local scaling based on local dynamics of an H2 dependence, but it is consistent with a steady state salt balance that allows scaling of the estuarine circulation based on external forcing factors and is independent of depth. In contrast, the observed and modeled increases in stratification are opposite of expectations from the steady state balance, which could be due to reduction in mixing with loss of shallow subtidal regions. Overall, the mean shift in estuarine parameter space due to channel deepening has been modest compared with the monthly‐to‐seasonal variability due to tides and river discharge.
    Description: Funding was provided by NSF Coastal SEES (OCE 1325136). Data supporting this study are posted to Zenodo (https://doi.org/10.5281/zenodo.2551285) or are available by contacting the author.
    Description: 2019-12-07
    Keywords: Estuarine circulation ; Salinity intrusion ; Stratification ; Dredging ; Hudson River
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...