ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data assimilation  (1)
  • American Geophysical Union  (1)
  • American Geophysical Union (AGU)
  • American Institute of Physics (AIP)
Collection
Publisher
  • American Geophysical Union  (1)
  • American Geophysical Union (AGU)
  • American Institute of Physics (AIP)
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C10011, doi:10.1029/2004JC002807.
    Description: A data assimilative model hindcast of the Gulf of Maine (GOM) coastal circulation during an 11 day field survey in early summer 2003 is presented. In situ observations include surface winds, coastal sea levels, and shelf hydrography as well as moored and shipboard acoustic Doppler D current profiler (ADCP) currents. The hindcast system consists of both forward and inverse models. The forward model is a three-dimensional, nonlinear finite element ocean circulation model, and the inverse models are its linearized frequency domain and time domain counterparts. The model hindcast assimilates both coastal sea levels and ADCP current measurements via the inversion for the unknown sea level open boundary conditions. Model skill is evaluated by the divergence of the observed and modeled drifter trajectories. A mean drifter divergence rate (1.78 km d−1) is found, demonstrating the utility of the inverse data assimilation modeling system in the coastal ocean setting. Model hindcast also reveals complicated hydrodynamic structures and synoptic variability in the GOM coastal circulation and their influences on coastal water material property transport. The complex bottom bathymetric setting offshore of Penobscot and Casco bays is shown to be able to generate local upwelling and downwelling that may be important in local plankton dynamics.
    Description: This work was supported by CSCOR/COP/ NOAA as part of NOAA MERHAB program. DJM gratefully acknowledges support from JPL through the ocean vector wind science team. DRL and KWS acknowledge support of NOAA/COP ECOHAB program.
    Keywords: Data assimilation ; Coastal ocean modeling ; Gulf of Maine circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...