ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxidative gene control  (2)
  • Springer  (2)
  • American Chemical Society (ACS)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 184 (1995), S. 3-7 
    ISSN: 1615-6102
    Keywords: Growth control ; Oxidative gene control ; Plasma membrane electron transport ; Cellular peroxide ; Superoxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Gene expression can be activated by external oxidants which are reduced at the cell surface by plasma membrane electron transport. The signals generated in response to the plasma membrane electron transport include activation of proton release, internal calcium changes, and change in reductant/oxidant ratio in the cytosol. H2O2 generated in response to ligands which bind to plasma membrane receptors can also activate protein tyrosine kinases and gene expression. Inhibition of oxygen radical generation at the cell surface in response to the mitogen, phorbol myristate acetate by retinoic acid is consistent with a role for the plasma membrane electron transport as the source for H2O2 in Balb 3T3 cells. Agents which affect the binding of coenzyme Q to redox sites in the plasma membrane electron transport may increase formation of semiquinone radicals in the membrane which can be a source of oxygen radicals and H2O2. The generation of H2O2 by transformed cells indicates that oncogene product expression in the plasma membrane may also increase quinone-based oxygen radical generation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 184 (1995), S. 214-219 
    ISSN: 1615-6102
    Keywords: Cellular peroxide ; Growth control ; Oxidative gene control ; Plasma membrane electron transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The addition of coenzyme Q10 to culture media stimulates the serum-free growth of HeLa, HL-60 cells, and mouse fibroblasts (Balb/3T3). With HeLa cells, the stimulation by coenzyme Q10 is additive to the stimulation by ferricyanide, an impermeable electron acceptor for the transplasma membrane electron transport. This combined response to coenzyme Q10 and ferricyanide is enhanced with insulin. α-Tocopherylquinone can also stimulate the growth of HeLa cells, but vitamin K1 is inactive. Specificity of quinone effects is indicated. Serum-free growth of Balb/3T3 and SV 40 transformed BaIb/3T3 (SV/T2) cells is also stimulated by coenzyme Qio with stimulation similar to HeLa cells. However, Balb/3T3 cells are not stimulated by ferricyanide, which does not increase the response to coenzyme Q10. The transformed cells (SV/T2) respond better to ferricyanide alone, but the effects of coenzyme Qio and ferricyanide are not additive. Serum-free growth of HL-60 cells is stimulated dramatically by coenzyme Q10. The extent of growth stimulation on HL-60 cells is almost six-fold that of HeLa or Balb/3T3 cells. The stimulation of NADH-ferricyanide reductase (a transmembrane redox enzyme) by coenzyme Q10 with HL-60 cells is similar to their growth pattern in response to coenzyme Q10. Unlike HL-60, HeLa and Balb/3T3 cells show little stimulation of ferricyanide reduction by coenzyme Q10. The stimulatory effect on both ferricyanide reduction and cell growth by the short side-chain coenzyme Q2 is much less than that of the long side-chain coenzyme Q10. Ferricyanide reduction by HeLa cells is inhibited by coenzyme Q analogs such as 2,3-dimethoxy-5-chloro-6-naphthyl-mercapto-coenzyme Q and 2-methoxy-3-ethoxyl-5-methyl-6-hexadecyl-mercapto-coenzyme Q. However, these inhibitions are reversed by coenzyme Q10. The growth inhibition of HL-60 cells by other coenzyme Q analogs, such as capsiacin can also be reversed by coenzyme Q10. These data indicate that plasma membrane-based NADH oxidation or modification of the membrane quinone redox balance may be a basis for the growth stimulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...