ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (29)
  • MDPI  (29)
  • American Chemical Society (ACS)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (29)
  • 1
    Publication Date: 2018
    Description: The present work aims at evaluating the potential gains derived from partially replacing calcium in resorbable β-tricalcium phosphate (β-TCP) by two different molar percentages of strontium (5, 10) and zinc (1, 2), concomitantly with a fixed molar percentage (0.5) of manganese. Synthetic granular composite bone filling grafts consisting of doped β-TCP and an alkali-free bioactive glass were prepared and implanted in ~4 mm diameter bone defects drilled in the calvaria of Wistar rats used as animal models. The animals were sacrificed after 9 weeks of implantation and the calvaria was excised. Non-manipulated bone was used as positive control, while empty defects were used as a negative control group. The von Kossa staining revealed an enhanced new bone formation with increasing doping levels, supporting the therapeutic effects exerted by the doping elements. The percentage of newly formed bone was similar when the defects were filled with autologous bone, BG (previous results) or 3TCP2/7BG, which indicates that the latter two are excellent candidates for replacement of autologous bone as bone regeneration material. This finding confirms that doping with suitable doses of therapeutic ions is a good strategy towards transposing the bone graft materials to biomedical applications in humans.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-31
    Description: Large estuaries are especially vulnerable to coastal flooding due to the potential of combined storm surges and riverine flows. Numerical models can support flood prevention and planning for coastal communities. However, while recent advancements in the development of numerical models for storm surge prediction have led to robust and accurate models; an increasing number of parameters and physical processes’ representations are available to modelers and engineers. This study investigates uncertainties associated with the selection of physical parameters or processes involved in storm surge modeling in large estuaries. Specifically, we explored the sensitivity of a hydrodynamic model (ADCIRC) and a coupled wind-wave and circulation model system (ADCIRC + SWAN) to Manning’s n coefficient, wind waves and circulation interaction (wave setup), minimum depth (H0) in the wetting and drying algorithm, and spatially constant horizontal eddy viscosity (ESLM) forced by tides and hurricane winds. Furthermore, sensitivity analysis to Manning’s n coefficient and the interaction of waves and circulation were analyzed by using three different numerical meshes. Manning’s coefficient analysis was divided into waterway (rivers, bay and shore, and open ocean) and overland. Overall, the rivers exhibited a larger sensitivity, and M2 amplitude and maximum water elevations were reduced by 0.20 m and 0.56 m, respectively, by using a high friction value; similarly, high friction reduced maximum water levels up to 0.30 m in overland areas; the wave setup depended on the offshore wave height, angle of breaking, the profile morphology, and the mesh resolution, accounting for up to 0.19 m setup inside the bay; minimum depth analysis showed that H0 = 0.01 added an artificial mass of water in marshes and channels, meanwhile H = 0.1 partially solved this problem; and the eddy viscosity study demonstrated that the ESLM = 40 values reduced up to 0.40 m the peak of the maximum water levels in the upper side of narrow rivers.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: To date, nonwoven fabrics made with natural fibres and thermoplastic commingled fibres have been extensively used in the composite industry for a wide variety of applications. This paper presents an innovative study about the effect of the manufacturing parameters on the mechanical behaviour of flax/PP nonwoven reinforced composites. The mechanical properties of nonwoven fabric reinforced composites are related directly to the ones of dry nonwoven reinforcements, which depend strongly on the nonwoven manufacturing parameters, such as the needle-punching and areal densities. Consequently, the influence of these manufacturing parameters will be analysed through the tensile and flexural properties. The results demonstrated that the more areal density the nonwoven fabric has, the more the mechanical behaviour can be tested for composites. By contrast, it has a complex influence on needle-punching density on the load-strain and bending behaviours at the composite scale.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018
    Description: The discovery of bioactive glasses (BGs) in the late 1960s by Larry Hench et al. was driven by the need for implant materials with an ability to bond to living tissues, which were intended to replace inert metal and plastic implants that were not well tolerated by the body. Among a number of tested compositions, the one that later became designated by the well-known trademark of 45S5 Bioglass® excelled in its ability to bond to bone and soft tissues. Bonding to living tissues was mediated through the formation of an interfacial bone-like hydroxyapatite layer when the bioglass was put in contact with biological fluids in vivo. This feature represented a remarkable milestone, and has inspired many other investigations aiming at further exploring the in vitro and in vivo performances of this and other related BG compositions. This paradigmatic example of a target-oriented research is certainly one of the most valuable contributions that one can learn from Larry Hench. Such a goal-oriented approach needs to be continuously stimulated, aiming at finding out better performing materials to overcome the limitations of the existing ones, including the 45S5 Bioglass®. Its well-known that its main limitations include: (i) the high pH environment that is created by its high sodium content could turn it cytotoxic; (ii) and the poor sintering ability makes the fabrication of porous three-dimensional (3D) scaffolds difficult. All of these relevant features strongly depend on a number of interrelated factors that need to be well compromised. The selected chemical composition strongly determines the glass structure, the biocompatibility, the degradation rate, and the ease of processing (scaffolds fabrication and sintering). This manuscript presents a first general appraisal of the scientific output in the interrelated areas of bioactive glasses and glass-ceramics, scaffolds, implant coatings, and tissue engineering. Then, it gives an overview of the critical issues that need to be considered when developing bioactive glasses for healthcare applications. The aim is to provide knowledge-based tools towards guiding young researchers in the design of new bioactive glass compositions, taking into account the desired functional properties.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018
    Description: Several studies have shown that chitosan possesses characteristics favorable for promoting dermal regeneration and accelerated wound healing. In this work we have reported the work that has been done on the development and characterization of biocompatible and biodegradable chitosan based matrices to be used as skin scaffolds. Poly(vinylpyrrrolidone) (PVP) was used as copolymer and a two steps methodology of freeze-drying and gamma irradiation was used to obtain the porous matrices. The influence of PVP content, synthesis procedure and absorbed radiation dose on matrices’ physical, chemical and structural properties was evaluated by ATR-FTIR, TGA, SEM, contact angle measurements and degradation behavior. The in vitro cellular viability and proliferation of HFFF2 fibroblast cell line was analyzed as a measure of matrices’ biocompatibility and ability to assist skin regeneration. Results show that over the studied range values, gamma-radiation dose, copolymer concentration and synthesis procedure can be used to tailor the matrices’ morphology in terms of porosity and surface roughness. Early results from biological assays evidence the biocompatibility of the prepared chitosan/PVP matrices since cells adhered to the surface of all matrices (chitosan/PVP (5%) γ-irradiated at 10 kGy presents the higher cellular viability). These features show that the resultant matrices could be a potential suitable scaffold for skin tissue regeneration.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: (1) Background: Recently, tricalcium silicate cements, such as Biodentine™, have emerged. This biomaterial has a calcium hydroxide base and characteristics like mineral aggregate trioxide cements, but has tightening times that are substantially more suitable for their application and other clinical advantages. (2) Methods: A retrospective clinical study was conducted with 20 patients, which included a clinical evaluation of the presence or absence of pulp inflammation compatible symptoms, radiographic evaluation of the periapical tissues, and structural alterations of the coronary restoration that supports pulp capping therapies with Biodentine™ and WhiteProRoot®MTA. (3) Results: This clinical study revealed similar success rates between mineral trioxide cement and tricalcium silicates cements at 6 months, with 100% and 95% success rates, respectively. There were no statistically significant differences between both biomaterials and between these and the various clinical circumstances, namely the absolute isolation of the operating field, exposure size, the aetiology of exposure, and even the type of restorative material used. (4) Conclusions: Biodentine™ demonstrated a therapeutic effect on the formation of a dentin bridge accompanied by slight inflammatory signs, with a high clinical success rate, indicating the possibility of its effective and safe use in dental pulp direct capping in humans, similar to the gold standard material.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: The incorporation of functional monomers in dental adhesive systems promotes chemical interaction with dental substrates, resulting in higher adhesion forces when compared to micromechanical adhesion only. The 10-MDP monomer, whose chemical structure allows for a polar behavior which is favorable to adhesion, also promotes the protection of collagen fibers through the formation of MDP-calcium salts. This systematic review aimed to characterize the interface created by 10-MDP containing adhesive systems through an evaluation of the following parameters: Formation of nano-layered structures, capacity to produce an acid-base resistant zone, and adhesion stability. The research was conducted using PubMed, Cochrane Library, Web of Science and Embase, limited to English, Spanish, and Portuguese articles. The research was done according to the PICO strategy. The 10-MDP monomer has the capacity to produce an acid-base resistant zone on the adhesive interface, which increases the response to acid-base challenges. The adhesion established by these systems is stable over time. To have the best of these adhesive solutions, a scrubbing technique must be used to apply the adhesive system on dental substrates, in order to improve monomers infiltration and to create a stable bond. Time must be given for the solution to infiltrate, hybridize and form the MDP-Ca, improving adhesive stability.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-03
    Description: Tidal energy is nowadays one of the fastest growing types of marine renewable energy. In particular, Horizontal Axis Tidal Turbines (HATTs) are the most advanced designs and the most appropriate for standardization. This paper presents a review of actual design criteria focusing on the identification of the uncertainties that technology developers need to address during the design process. Key environmental parameters like turbine inflow conditions or predictions of extreme values are still grey areas due to the lack of site measurements and the uncertainty in metocean model predictions. A comparison of turbulence intensity characterization using different tools and at different points in time shows the uncertainty in the prediction of this parameter. Numerical models of HATTs are still quite uncertain, often dependent on experience of the people running them. In the reliability-based calibration of partial safety factors, the uncertainties need to be reflected on the limit state formulation. This paper analyses the different types of uncertainties present in the limit state equation. These uncertainties are assessed in terms of stochastic variables in the limit state equation. In some cases, advantage can be taken from the experience from offshore wind and oil and gas industries. Tidal turbines have a mixture of the uncertainties present in both industries with regard to partial safety factor calibration.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Carbon nanotubes (CNTs) are one of the most promising materials in sensing applications due to their electrical and mechanical properties. This paper presents a comparative study between CNT Buckypaper (BP) and aligned CNT-based strain sensors. The Buckypapers were produced by vacuum filtration of commercial CNTs dispersed in two different solvents, N,N-Dimethylformamide (DMF) and ethanol, forming freestanding sheets, which were cut in 10 × 10 mm squares and transferred to polyimide (PI) films. The morphology of the BP was characterized by scanning electron microscopy (SEM). The initial electrical resistivity of the samples was measured, and then relative electrical resistance versus strain measurements were obtained. The results were compared with the knocked-down vertically aligned CNT/PI based sensors previously reported. Although both types of sensors were sensitive to strain, the aligned CNT/PI samples had better mechanical performance and the advantage of inferring strain direction due to their electrical resistivity anisotropic behavior.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Although traditionally high-surface area carbon materials have been considered as rigid structures with a disordered three dimensional (3D) network of graphite microdomains associated with a limited electrical conductivity (highly depending on the porous structure and surface chemistry), here we show for the first time that this is not the case for activated carbon materials prepared using harsh activation conditions (e.g., KOH activation). In these specific samples a clear structural re-orientation can be observed upon adsorption of different organic molecules, the structural changes giving rise to important changes in the electrical resistivity of the material. Whereas short chain hydrocarbons and their derivatives give rise to an increased resistivity, the contrary occurs for longer-chain hydrocarbons and/or alcohols. The high sensitivity of these high-surface area carbon materials towards these organic molecules opens the gate towards their application for sensing devices.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...