ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (4)
  • Nature Publishing Group (NPG)  (4)
  • American Chemical Society (ACS)
  • American Institute of Physics (AIP)
  • 1
    Publication Date: 2013-06-14
    Description: 53BP1 (also called TP53BP1) is a chromatin-associated factor that promotes immunoglobulin class switching and DNA double-strand-break (DSB) repair by non-homologous end joining. To accomplish its function in DNA repair, 53BP1 accumulates at DSB sites downstream of the RNF168 ubiquitin ligase. How ubiquitin recruits 53BP1 to break sites remains unknown as its relocalization involves recognition of histone H4 Lys 20 (H4K20) methylation by its Tudor domain. Here we elucidate how vertebrate 53BP1 is recruited to the chromatin that flanks DSB sites. We show that 53BP1 recognizes mononucleosomes containing dimethylated H4K20 (H4K20me2) and H2A ubiquitinated on Lys 15 (H2AK15ub), the latter being a product of RNF168 action on chromatin. 53BP1 binds to nucleosomes minimally as a dimer using its previously characterized methyl-lysine-binding Tudor domain and a carboxy-terminal extension, termed the ubiquitination-dependent recruitment (UDR) motif, which interacts with the epitope formed by H2AK15ub and its surrounding residues on the H2A tail. 53BP1 is therefore a bivalent histone modification reader that recognizes a histone 'code' produced by DSB signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955401/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955401/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fradet-Turcotte, Amelie -- Canny, Marella D -- Escribano-Diaz, Cristina -- Orthwein, Alexandre -- Leung, Charles C Y -- Huang, Hao -- Landry, Marie-Claude -- Kitevski-LeBlanc, Julianne -- Noordermeer, Sylvie M -- Sicheri, Frank -- Durocher, Daniel -- 84297-1/Canadian Institutes of Health Research/Canada -- 84297-2/Canadian Institutes of Health Research/Canada -- MOP84297/Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 Jul 4;499(7456):50-4. doi: 10.1038/nature12318. Epub 2013 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23760478" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Cycle Proteins/chemistry/metabolism ; Cell Line ; Chromosomal Proteins, Non-Histone/chemistry/deficiency/genetics ; DNA Breaks, Double-Stranded ; *DNA Damage ; DNA-Binding Proteins/chemistry/deficiency/genetics ; Female ; Histones/*chemistry/*metabolism ; Humans ; Intracellular Signaling Peptides and ; Proteins/chemistry/deficiency/genetics/*metabolism ; Lysine/*metabolism ; Male ; Mice ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Nuclear Proteins/chemistry/metabolism ; Nucleosomes/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Schizosaccharomyces ; Schizosaccharomyces pombe Proteins/chemistry/metabolism ; Signal Transduction ; Ubiquitin/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-28
    Description: A complex interaction of signalling events, including the Wnt pathway, regulates sprouting of blood vessels from pre-existing vasculature during angiogenesis. Here we show that two distinct mutations in the (uro)chordate-specific gumby (also called Fam105b) gene cause an embryonic angiogenic phenotype in gumby mice. Gumby interacts with disheveled 2 (DVL2), is expressed in canonical Wnt-responsive endothelial cells and encodes an ovarian tumour domain class of deubiquitinase that specifically cleaves linear ubiquitin linkages. A crystal structure of gumby in complex with linear diubiquitin reveals how the identified mutations adversely affect substrate binding and catalytic function in line with the severity of their angiogenic phenotypes. Gumby interacts with HOIP (also called RNF31), a key component of the linear ubiquitin assembly complex, and decreases linear ubiquitination and activation of NF-kappaB-dependent transcription. This work provides support for the biological importance of linear (de)ubiquitination in angiogenesis, craniofacial and neural development and in modulating Wnt signalling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rivkin, Elena -- Almeida, Stephanie M -- Ceccarelli, Derek F -- Juang, Yu-Chi -- MacLean, Teresa A -- Srikumar, Tharan -- Huang, Hao -- Dunham, Wade H -- Fukumura, Ryutaro -- Xie, Gang -- Gondo, Yoichi -- Raught, Brian -- Gingras, Anne-Claude -- Sicheri, Frank -- Cordes, Sabine P -- IHO 94384/Canadian Institutes of Health Research/Canada -- MOP 111199/Canadian Institutes of Health Research/Canada -- MOP 97966/Canadian Institutes of Health Research/Canada -- MOP119289/Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 Jun 20;498(7454):318-24. doi: 10.1038/nature12296. Epub 2013 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mt Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23708998" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Alleles ; Amino Acid Sequence ; Animals ; Base Sequence ; Crystallography, X-Ray ; Embryo, Mammalian/blood supply/embryology/metabolism ; Endopeptidases/*chemistry/deficiency/genetics/*metabolism ; Female ; Gene Expression Profiling ; HEK293 Cells ; Humans ; Mice ; Models, Molecular ; Molecular Sequence Data ; *Neovascularization, Physiologic/genetics ; Phenotype ; Phosphoproteins/metabolism ; Protein Conformation ; Ubiquitin/*chemistry/*metabolism ; Ubiquitin-Protein Ligases/metabolism ; *Ubiquitination ; Wnt Signaling Pathway
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-02-15
    Description: The TrkH/TrkG/KtrB proteins mediate K(+) uptake in bacteria and probably evolved from simple K(+) channels by multiple gene duplications or fusions. Here we present the crystal structure of a TrkH from Vibrio parahaemolyticus. TrkH is a homodimer, and each protomer contains an ion permeation pathway. A selectivity filter, similar in architecture to those of K(+) channels but significantly shorter, is lined by backbone and side-chain oxygen atoms. Functional studies showed that TrkH is selective for permeation of K(+) and Rb(+) over smaller ions such as Na(+) or Li(+). Immediately intracellular to the selectivity filter are an intramembrane loop and an arginine residue, both highly conserved, which constrict the permeation pathway. Substituting the arginine with an alanine significantly increases the rate of K(+) flux. These results reveal the molecular basis of K(+) selectivity and suggest a novel gating mechanism for this large and important family of membrane transport proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077569/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077569/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cao, Yu -- Jin, Xiangshu -- Huang, Hua -- Derebe, Mehabaw Getahun -- Levin, Elena J -- Kabaleeswaran, Venkataraman -- Pan, Yaping -- Punta, Marco -- Love, James -- Weng, Jun -- Quick, Matthias -- Ye, Sheng -- Kloss, Brian -- Bruni, Renato -- Martinez-Hackert, Erik -- Hendrickson, Wayne A -- Rost, Burkhard -- Javitch, Jonathan A -- Rajashankar, Kanagalaghatta R -- Jiang, Youxing -- Zhou, Ming -- DK088057/DK/NIDDK NIH HHS/ -- GM05026/GM/NIGMS NIH HHS/ -- GM05026-SUB0007/GM/NIGMS NIH HHS/ -- HL086392/HL/NHLBI NIH HHS/ -- K05 DA022413/DA/NIDA NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 DK088057/DK/NIDDK NIH HHS/ -- R01 DK088057-01/DK/NIDDK NIH HHS/ -- R01 HL086392/HL/NHLBI NIH HHS/ -- R01 HL086392-05/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Mar 17;471(7338):336-40. doi: 10.1038/nature09731. Epub 2011 Feb 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology & Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21317882" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/chemistry ; Amino Acid Sequence ; Crystallography, X-Ray ; Escherichia coli Proteins/chemistry ; Ion Channel Gating ; Ion Transport ; Models, Molecular ; Molecular Sequence Data ; Potassium/metabolism ; Potassium Channels/*chemistry/*metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Vibrio parahaemolyticus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-10-19
    Description: Histone chaperones represent a structurally and functionally diverse family of histone-binding proteins that prevent promiscuous interactions of histones before their assembly into chromatin. DAXX is a metazoan histone chaperone specific to the evolutionarily conserved histone variant H3.3. Here we report the crystal structures of the DAXX histone-binding domain with a histone H3.3-H4 dimer, including mutants within DAXX and H3.3, together with in vitro and in vivo functional studies that elucidate the principles underlying H3.3 recognition specificity. Occupying 40% of the histone surface-accessible area, DAXX wraps around the H3.3-H4 dimer, with complex formation accompanied by structural transitions in the H3.3-H4 histone fold. DAXX uses an extended alpha-helical conformation to compete with major inter-histone, DNA and ASF1 interaction sites. Our structural studies identify recognition elements that read out H3.3-specific residues, and functional studies address the contributions of Gly 90 in H3.3 and Glu 225 in DAXX to chaperone-mediated H3.3 variant recognition specificity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4056191/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4056191/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elsasser, Simon J -- Huang, Hongda -- Lewis, Peter W -- Chin, Jason W -- Allis, C David -- Patel, Dinshaw J -- 1S10RR022321-01/RR/NCRR NIH HHS/ -- 1S10RR027037-01/RR/NCRR NIH HHS/ -- MC_U105181009/Medical Research Council/United Kingdom -- P30 EB009998/EB/NIBIB NIH HHS/ -- P30-EB-009998/EB/NIBIB NIH HHS/ -- S10 RR022321/RR/NCRR NIH HHS/ -- S10 RR027037/RR/NCRR NIH HHS/ -- U105181009/PHS HHS/ -- UD99999908/PHS HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2012 Nov 22;491(7425):560-5. doi: 10.1038/nature11608. Epub 2012 Oct 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23075851" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/metabolism ; Amino Acid Sequence ; Binding, Competitive ; Cell Cycle Proteins/genetics/metabolism ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; Histone Chaperones/chemistry/metabolism ; Histones/*chemistry/*metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/chemistry/metabolism ; Nucleosomes/chemistry/metabolism ; Protein Conformation ; Protein Multimerization ; Substrate Specificity ; Water/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...