ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Interfacial fracture toughness and cyclic fatigue-crack growth properties of joints made from 99.5% pure alumina partially transient liquid-phase bonded using copper/niobium/copper interlayers have been investigated at both room and elevated temperatures, and assessed in terms of interfacial chemistry and microstructure. The mean interfacial fracture toughness, Gc, was found to decrease from 39 to 21 J/m2 as temperature was raised from 25° to 1000°C, with failure primarily at the alumina/niobium interfaces. At room temperature, cyclic fatigue-crack propagation occurred both at the niobium/alumina interface and in the alumina adjacent to the interface, with the fatigue threshold, ΔGTH, ranging from 20 to 30 J/m2; the higher threshold values in that range resulted from a predominantly near-interfacial (alumina) crack path. During both fracture and fatigue failure, residual copper at the interface deformed and remained adhered to both sides of the fracture surface, acting as a ductile second phase, while separation of the niobium/alumina interface appeared relatively brittle in both cases. The observed fracture and fatigue behavior is considered in terms of the respective roles of the presence of ductile copper regions at the interface which provide toughening, extrinsic toughening due to grain bridging during crack propagation in the alumina, and the relative crack propagation resistance of each crack path, including the effects of segregation at the interfaces found by Auger spectroscopy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 3083-3088 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The fracture behavior of synthetic diamond has been investigated using indentation methods and by the tensile testing of pre-notched fracture-mechanics type samples. Specifically, the fracture toughness of free-standing diamond plates, grown by chemically-vapor deposited (CVD) methods, was measured using Vickers indentations and by the use of disk-shaped compact-tension specimens; the latter method provides an evaluation of the through-thickness fracture properties, whereas the indentation method was performed on the nucleation surface of the sample. Measured fracture toughness (Kc) values were found to be approximately 5–6 MPa(square root of)m by both methods, indicating that the fracture resistance of CVD diamond does not vary appreciably with grain size (within the certainty of the testing procedures). Complications, however, arose with the fracture-mechanics testing regarding crack initiation from a relatively blunt notch; further work is needed to develop pre-cracking methods to permit more reliable fracture toughness testing of diamond. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 71 (1997), S. 476-478 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The recent development of metallic alloy systems which can be processed with an amorphous structure over large dimensions, specifically to form metallic glasses at low cooling rates (∼10 K/s), has permitted novel measurements of important mechanical properties. These include, for example, fatigue-crack growth and fracture toughness behavior, representing the conditions governing the subcritical and critical propagation of cracks in these structures. In the present study, bulk plates of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy, machined into 7 mm wide, 38 mm thick compact-tension specimens and fatigue precracked following standard procedures, revealed fracture toughnesses in the fully amorphous structure of KIc∼55 MPa(square root of)m, i.e., comparable with that of a high-strength steel or aluminum alloy. However, partial and full crystallization, e.g., following thermal exposure at 633 K or more, was found to result in a drastic reduction in fracture toughness to ∼1 MPa(square root of)m, i.e., comparable with silica glass. The fully amorphous alloy was also found to be susceptible to fatigue-crack growth under cyclic loading, with growth-rate properties comparable to that of ductile crystalline metallic alloys, such as high-strength steels or aluminum alloys; no such fatigue was seen in the partially or fully crystallized alloys which behaved like very brittle ceramics. Possible micromechanical mechanisms for such behavior are discussed. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 74 (1999), S. 3809-3811 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A light emission phenomenon observed during dynamic fracture of a bulk metallic glass, Zr41.2Ti13.8Cu12.5Ni10Be22.5 (at. %), has been investigated using Charpy V-notch impact specimens. Unlike more conventional crystalline metals, these Zr-based amorphous alloys emit intense flashes of visible light when ruptured. The mechanisms for this surprising behavior are unknown and the phenomenon remains uncharacterized. Here we report spectroscopic measurements of the light emitted from specimens fractured in both room air and nitrogen gas. Spectra acquired from specimens ruptured in air exhibited a single broad peak, which could be fit to a blackbody temperature of ∼3175 K. Emission from specimens fractured in nitrogen, however, was at least four orders of magnitude less intense. The spectrum was shifted to the red with an effective blackbody temperature of ∼1400 K. Fracture surfaces of specimens ruptured in both air and nitrogen exhibited local melting, providing further evidence of intense heating during fracture. Based on these observations we argue that the intense light emission in air is associated with pyrolysis of fresh material exposed during rupture. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Fatigue & fracture of engineering materials & structures 10 (1987), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract— The development of crack closure during the plane strain extension of large and small fatigue cracks has been investigated in a 2124 aluminum alloy using both experimental and numerical procedures. Specifically, the growth rate and crack closure behavior of long (∼17–38 mm) cracks, through-thickness physically-short (50–400 μm) cracks, and naturally-occurring microstructurally-small (2–400 μm) surface cracks have been examined experimentally from threshold levels to instability (over the range 10–12–10–6m/cycle). Results are compared with those predicted numerically using an elastic-plastic finite element analysis of fatigue crack advance and closure under both plane stress and plane strain conditions. It is shown that both the short through-thickness and small surface cracks propagate below the long crack threshold at rates considerably in excess of long cracks, consistent with the reduced levels of closure developed in their limited wake. Numerical analysis, however, is found consistently to underpredict the magnitude of crack closure for both large and small cracks, particularly at near-threshold levels; an observation attributed to the fact that the numerical procedures can only model contributions from cyclic plasticity, whereas in reality significant additional closure arises from the wedging action of fracture surface asperities and corrosion debris. Although such shielding mechanisms are considered to provide a prominent mechanism for differences in the growth rate behavior of large and small cracks, other factors such as the nature of the stress and strain singularity and the extent of local plasticity are shown to play an important role.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Fatigue & fracture of engineering materials & structures 1 (1979), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract— Industrial multi-pass TIG weldments of HP 9-4-20 high strength alloy steel have been found to contain significant volume fractions (around 10%) of retained austenite which are not readily transformed after stress relieving and subsequent refrigeration procedures. To determine whether the presence of such retained austenite in tempered martensitic structures could be detrimental to fatigue resistance in HP 9-4-20 steel, fatigue crack propagation behavior was examined over six orders of magnitude in growth rate, in commercially heat-treated material (containing less than 3% austenite) and in intercritically heat-treated and tempered material (containing approx. 14% austenite) in an environment of moist, ambient temperature air. Whereas crack propagation rates were unchanged at growth rates exceeding 10−6 mm/cycle, structures containing 14% austenite showed somewhat superior resistance to near-threshold crack propagation at growth rates less than 10 −6 mm/cycle, the threshold for crack growth (ΔK0) being over 20% higher than in commercially heat-treated material. The presence of retained austenite further appeared to inhibit the occurrence of intergranular fracture at near-threshold levels. It was concluded that significant proportions of retained austenite are not detrimental to fatigue crack propagation resistance in HP 9-4-20 steel, and may indeed have some beneficial effect at very low, near-threshold growth rates by increasing resistance to environmentally-assisted cracking.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    PO Box 1354, 9600 Garsington Road, Oxford OX4 2XG, UK. : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 28 (2005), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The fracture of bone is a health concern of increasing significance as the population ages. It is therefore of importance to understand the mechanics and mechanisms of how bone fails, both from a perspective of outright (catastrophic) fracture and from delayed/time-dependent (subcritical) cracking. To address this need, there have been many in vitro studies to date that have attempted to evaluate the relevant fracture and fatigue properties of human cortical bone; despite these efforts, however, a complete understanding of the mechanistic aspects of bone failure, which spans macroscopic to nanoscale dimensions, is still lacking. This paper seeks to provide an overview of the current state of knowledge of the fracture and fatigue of cortical bone, and to address these issues, whenever possible, in the context of the hierarchical structure of bone. One objective is thus to provide a mechanistic interpretation of how cortical bone fails. A second objective is to develop a framework by which fracture and fatigue results in bone can be presented. While most studies on bone fracture have relied on linear-elastic fracture mechanics to determine a single-value fracture toughness (e.g., Kc or Gc), more recently, it has become apparent that, as with many composites or toughened ceramics, the toughness of bone is best described in terms of a resistance-curve (R-curve), where the toughness is evaluated with increasing crack extension. Through the use of the R-curve, the intrinsic and extrinsic factors affecting its toughness are separately addressed, where ‘intrinsic’ refers to the damage processes that are associated with crack growth ahead of the tip, and ‘extrinsic’ refers to the shielding mechanisms that primarily act in the crack wake. Furthermore, fatigue failure in bone is presented from both a classical fatigue life (S/N) and fatigue-crack propagation (da/dN) perspective, the latter providing for an easier interpretation of fatigue micromechanisms. Finally, factors, such as age, species, orientation, and location, are discussed in terms of their effect on fracture and fatigue behaviour and the associated mechanisms of bone failure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Fatigue & fracture of engineering materials & structures 20 (1997), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract— Cyclic fatigue-crack growth and resistance-curve behavior have been studied in a fine-grained (∼ 1 μm), high-purity alumina. Specific emphasis is given to the mechanisms associated with crack growth that are controlled by the maximum (Kmax) and the alternating (ΔK), stress intensities and to the role of crack-face interference (crack closure), which is known to be an important crack-tip shielding mechanism in metal fatigue. Significant levels of subcritical crack growth were detected above a threshold stress intensity of ∼60% of the fracture toughness (Kc) in the alumina, with growth rates displaying a far larger dependence on Kmax compared to ΔK. The role of crack closure was examined using constant-Kmax experiments, where the minimum stress intensity (Kmin) was maintained either above or below the stress intensity for crack closure (Kcl). Where Kmin〈 Kcl, growth rates were found to exhibit a lower dependence on ΔK, which was rationalized in terms of the frictional wear model for crack growth in grain-bridging ceramics. It is concluded that crack closure, as conventionally defined, has little relevance as a crack-tip shielding mechanism during fatigue-crack growth in grain-bridging ceramics, due to the low dependence of growth rates on ΔK compared to Kmax.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Fatigue & fracture of engineering materials & structures 5 (1982), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract— The use of d.c. electrical potential methods is described for the monitoring of Mode III (anti-plane shear) fatigue cracks in circumferentially-notched cylindrical specimens subjected to cyclic torsion. Calibration of potential change with crack depth and optimization of current input and potential measurement probe locations are achieved using simple finite element procedures, and are verified experimentally. The use of the method for Mode III crack growth studies is described in the light of crack face electrical shorting problems associated with torsional crack closure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 25 (2002), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Effect of microstructure on mixed-mode (mode I + II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of crack sizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditions were examined—a fine-grained equiaxed bimodal structure (grain size ∼20 µm) and a coarser lamellar structure (colony size ∼500 µm). Studies were conducted over a range of mode-mixities, from pure mode I (ΔKII/ΔKI = 0) to nearly pure mode II (ΔKII/ΔKI ∼ 7.1), at load ratios (minimum load/maximum load) between 0.1 and 0.8, with thresholds characterized in terms of the strain-energy release rate (ΔG) incorporating both tensile and shear-loading components. In the presence of through-thickness cracks—large (〉 4 mm) compared to microstructural dimensions—significant effects of mode-mixity and load ratio were observed for both microstructures, with the lamellar alloy generally displaying the better resistance. However, these effects were substantially reduced if allowance was made for crack-tip shielding. Additionally, when thresholds were measured in the presence of cracks comparable to microstructural dimensions, specifically short (∼200 µm) through-thickness cracks and microstructurally small (〈 50 µm) surface cracks, where the influence of crack-tip shielding would be minimal, such effects were similarly markedly reduced. Moreover, small-crack ΔGTH thresholds were some 50–90 times smaller than corresponding large crack values. Such effects are discussed in terms of the dominant role of mode I behaviour and the effects of microstructure (in relation to crack size) in promoting crack-tip shielding that arises from significant changes in the crack path in the two structures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...