ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-03
    Description: Revealing and understanding the microscopic origins of the macroscopic properties of aluminosilicate glasses is important for the design of new glasses with optimized properties. In this work, we study the composition-structure-property relationships in 20 MgO / CaO sodium aluminosilicate glasses upon Al 2 O 3 -for- SiO 2 and MgO -for- CaO substitutions. We find that some properties (density, molar volume, Young's modulus, and shear modulus) are linear through the investigated range of Al 2 O 3 compositions, while others (refractive index, coefficient of thermal expansion, Vickers hardness, isokom temperatures, and liquid fragility index) exhibit a change in the slope around the composition with [ Al 2 O 3 ] = [ Na 2 O ], which is especially pronounced for the glasses containing MgO . We discuss these phenomena based on structural information obtained by NMR spectroscopy and topological considerations.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: Abstract Tantalum silicate glasses serve as laser host materials to take advantage of their high refractive index and the ability to tailor their physical properties in the design of high‐performance photonic and photoelectric components. However, successful attainment of feature control in tantalum‐doped materials remains a longstanding problem due to the limited understanding of local structure around the tantalum ions, a problem that lies at the heart of predicting the micro‐ and macroscopic properties of these glasses. Herein, we present a novel approach for predicting the local structural environments in tantalum silicate glass based on a phase diagram approach. The phase relations and glass formation region of Li2O–Ta2O5–SiO2 ternary systems are explored to calculate the structure and additive physical properties of lithium tantalum silicate glasses. These measured and calculated results are in good quantitative agreement, indicating that the phase diagram approach can be applied broadly to Li2O–Ta2O5–SiO2 ternary glass systems. Using the phase diagram approach, the local structure of tantalum can be directly obtained. Each Ta atom is surrounded by six atoms, and its polyhedron, the TaO6 octahedron, bonds through oxygen to Li and Ta. As a network modifier, Ta5+ depolymerizes the silicate glass structure by modulating the local structure of lithium atoms in Li2O–Ta2O5–SiO2 ternary glass system. The compositional dependence of structure in lithium tantalum silicate glasses is quantitatively determined based on the structure of the nearest neighbor congruent compound through the lever rule. These findings offer a precise prediction of tantalum silicate glass properties with quantitative control over local structural environment of the disordered materials.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-06
    Description: The problem of glass relaxation is traditionally known as one of the most challenging problems in condensed matter physics, with important implications for several high-tech applications of glass. In this study, we present a predictive model for the temperature, thermal history, and composition dependence of glassy relaxation dynamics. Our model enables, for the first time, the quantitative prediction of relaxation behavior for new glass compositions. Using the commercial Corning EAGLE XG ® alkaline earth aluminosilicate glass as a reference, the model gives accurate predictions of the nonequilibrium viscosity for four other aluminosilicate glasses, covering both alkali-free and alkali-containing compositions, without any free fitting parameters. Using the composition-dependent nonequilibrium viscosity model, only the measured values of the glass transition temperature and fragility are required to predict the nonequilibrium viscosity as a function of both temperature and thermal history. The range of glass transition temperatures of the four verification glasses covers about 200°C, while that of fragility values is about 10. As such, this work gives insights into the structural origin of nonequilibrium viscosity and can enable the future design of glass compositions with tailored relaxation behavior. This article is protected by copyright. All rights reserved.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-12-03
    Description: Oxide glasses often consist of multiple network formers that create the backbone of the glass network and modifiers that serve as either charge compensators or creators of non-bridging oxygens. The variety of bonding preferences results in very rich composition-property relationships. In this work, we present a statistical description of the glass structure governed by the relative enthalpic and entropic contributions to the bonding preferences in a glassy system. Using the proposed model, we derive an analytical expression to represent the bonding in mixed modifier glasses and explain the role of composition and fictive temperature on glass structure. The model provides the criteria for nonlinearity in bonding preference and reveals regions where high fluctuations in local structure are predicted. This article is protected by copyright. All rights reserved.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-07-22
    Description: A popular urban legend concerns the apparent flow of stained glass windows in medieval cathedrals, where the glass windows are commonly observed to be thicker at the bottom than they are at the top. Advances in glass transition theory and experimental characterization techniques now allow for us to address this urban legend directly. In this work, we investigate the dynamics of a typical medieval glass composition used in Westminster Abbey. Depending on the thermal history of the glass, the room temperature viscosity is on the order of 10 24 to 10 25 Pa·s, about 16 orders of magnitude lower than found in a previous study of soda lime silicate glass. This measurement is in quantitative agreement with a newly derived model for the composition dependence of the nonequilibrium viscosity of glass. Despite this significantly lower value of the room temperature viscosity, the viscosity of the glass is much too high to observe measurable viscous flow on a human time scale. Using analytical expressions to describe the glass flow over a wall, we calculate a maximum flow of ~1 nm over a billion years. This article is protected by copyright. All rights reserved.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-01
    Description: As one of the most important properties of glass-forming liquids, viscosity has drawn significant attention in both glass manufacturing and fundamental research. We review the recent scientific progress in viscosity of glass-forming systems, including both the liquid and glassy states. After the Vogel-Fulcher-Tammann (VFT) equation was introduced, many more efforts have been made to develop more accurate models to describe the temperature dependence of viscosity. In addition to the VFT equation, we also discuss three other viscosity models, viz., the Adam-Gibbs, Avramov-Milchev, and Mauro-Yue-Ellison-Gupta-Allan models. We compare the four viscosity models in terms of their theoretical underpinnings and ability to fit measured viscosity curves. The concept of fragility and the universality of the high-temperature viscosity limit are also discussed. Temperature-dependent constraint theory is introduced in detail as a powerful tool for predicting the composition dependence of viscosity. Some examples of the application of this approach to predict the glass transition temperature and fragility of various glass systems are shown. Topological constraint theory is not only of scientific interest, but also has important industrial applicability. We also discuss the thermal history dependence of viscosity in the glassy state. Some phenomenological models are briefly reviewed, while the main focus is given to the modified Mauro-Allan-Potuzak model, which can accurately predict the nonequilibrium viscosity as a function of temperature, thermal history, and composition. The correlation of viscosity with elasticity is described in terms of the shoving model. Some theoretical implications of the various viscosity models are discussed, including the concepts of the Kauzmann paradox and the ideal glass transition. Some of the evidence against the existence of these phenomena are discussed. We also review the link between glass relaxation and viscosity, that is, emphasizing that the viscosity equations presented in this review can also be used to model different types of relaxation effects based on the Maxwell relation.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 99 (1995), S. 15765-15774 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...