ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Gas exchange  (3)
  • Springer  (3)
  • American Chemical Society
Collection
Publisher
  • Springer  (3)
  • American Chemical Society
Years
  • 1
    ISSN: 1432-2285
    Keywords: CO2 ; Ozone ; Norway spruce ; Gas exchange ; Biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract To study the single and combined effects of elevated carbon dioxide (CO2), ozone (O3), nitrogen nutrition, and water supply on photosynthetic gas exchange and biomass accumulation of Norway spruce, a four-factorial experiment was conducted in closed environmental chambers. Each factor was applied at two levels: (i) ambient and elevated (ambient + 200 μl 1-1) CO2, (ii) 20 and 80 nl 1-1 O3, (iii) low and high nitrogen fertilization, and (iv) a well watered and a drought treatment. Neither elevated O3 nor CO2 significantly changed stomatal conductances of spruce needles. Adverse effects of elevated O3 on photosynthetic parameters such as net assimilation rate and carboxylation efficiency occurred only when the plants were well watered and in a good nutritional status. After 6 weeks enhanced atmospheric CO2 resulted in increased net assimilation rates provided that nutrition was well balanced and plants were well watered. Acclimation processes became apparent and are interpreted as a consequence of sink regulation. While O3-effects were apparent only in biomass of 1-year-old plant material, elevated CO2 resulted in higher biomass of the buds expanding during the exposure and increased root biomass significantly. Above and below-ground biomass were strongly influenced by the water and nutrition treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0931-1890
    Keywords: Key words CO2 ; Ozone ; Norway spruce ; Gas exchange ; Biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  To study the single and combined effects of elevated carbon dioxide (CO2), ozone (O3), nitrogen nutrition, and water supply on photosynthetic gas exchange and biomass accumulation of Norway spruce, a four-factorial experiment was conducted in closed environmental chambers. Each factor was applied at two levels: (i) ambient and elevated (ambient + 200 μl l –  1) CO2, (ii) 20 and 80 nl l –  1 O3, (iii) low and high nitrogen fertilization, and (iv) a well watered and a drought treatment. Neither elevated O3 nor CO2 significantly changed stomatal conductances of spruce needles. Adverse effects of elevated O3 on photosynthetic parameters such as net assimilation rate and carboxylation efficiency occurred only when the plants were well watered and in a good nutritional status. After 6 weeks enhanced atmospheric CO2 resulted in increased net assimilation rates provided that nutrition was well balanced and plants were well watered. Acclimation processes became apparent and are interpreted as a consequence of sink regulation. While O3 effects were apparent only in biomass of 1-year-old plant material, elevated CO2 resulted in higher biomass of the buds expanding during the exposure and increased root biomass significantly. Above- and below-ground biomass were strongly influenced by the water and nutrition treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0931-1890
    Keywords: Key words Ozone ; CO2 ; Norway spruce ; Gas exchange ; “Memory” effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Well-supplied and K-deficient 4-year-old clonal Norway spruce trees were exposed to combinations of two levels of ozone (20 and 80 nl l –  1 O3) and carbon dioxide (350 and 750 μl l –  1 CO2) to study the effects of possible future climate factors on gas exchange characteristics. The fumigation was performed in environmental chambers for a complete growing season. After the exposure, plants were cultivated outdoors to investigate possible recovery and delayed effects. During the exposure 1-year-old needles responded to the 80 nl l –  1 O3 treatment by a sharp but transient decrease of both apparent carboxylation efficiency (CE) and maximum photosynthetic capacity (A2500). Elevated CO2 also reduced CE and A2500. The effect became stronger in the course of the exposure and was accompanied by decreases of N and P as well as chlorophyll contents. In case of K deficiency, the acclimation response of current-year needles was even more pronounced reflecting lower sink capacities for carbon metabolites. The joint application of elevated O3 and CO2 resulted in the lowest values of gas exchange parameters and chlorophyll contents. At the beginning of the growing season after the exposure and under outdoor conditions, all these treatment effects disappeared in the needles which had developed during the fumigation. In the course of the development of the new flush, however, the well-supplied 1-year-old needles which had been treated with 80 nl l –  1 O3 and 350 μl l –  1 CO2 in the year before, exhibited a sharp decline of CE and A2500. Simultaneously, chlorotic mottle and bands developed. These delayed symptoms are discussed in the context of the previously published “memory” effect for O3 (Sandermann et al. 1989). Additionally, evidence is presented that shoot development is altered in plants which had been exposed to elevated O3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...