ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (84)
  • Wiley  (52)
  • Public Library of Science  (12)
  • American Chemical Society  (11)
  • Molecular Diversity Preservation International  (6)
  • Frontiers Media
  • ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft Kiel, Hamburg
  • Geosciences  (50)
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (21)
  • Natural Sciences in General  (13)
Collection
  • Articles  (84)
Publisher
Journal
  • 11
    Publication Date: 2011-02-16
    Description: The goal of this study was to test the hypothesis that the aggregated state of natural marine particles constrains the sensitivity of optical beam attenuation to particle size. An instrumented bottom tripod was deployed at the 12-m node of the Martha's Vineyard Coastal Observatory to monitor particle size distributions, particle size-versus-settling-velocity relationships, and the beam attenuation coefficient (cp) in the bottom boundary layer in September 2007. An automated in situ filtration system on the tripod collected 24 direct estimates of suspended particulate mass (SPM) during each of five deployments. On a sampling interval of 5 min, data from a Sequoia Scientific LISST 100x Type B were merged with data from a digital floc camera to generate suspended particle volume size distributions spanning diameters from approximately 2 μm to 4 cm. Diameter-dependent densities were calculated from size-versus-settling-velocity data, allowing conversion of the volume size distributions to mass distributions, which were used to estimate SPM every 5 min. Estimated SPM and measured cp from the LISST 100x were linearly correlated throughout the experiment, despite wide variations in particle size. The slope of the line, which is the ratio of cp to SPM, was 0.22 g m−2. Individual estimates of cp:SPM were between 0.2 and 0.4 g m−2 for volumetric median particle diameters ranging from 10 to 150 μm. The wide range of values in cp:SPM in the literature likely results from three factors capable of producing factor-of-two variability in the ratio: particle size, particle composition, and the finite acceptance angle of commercial beam-transmissometers.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019
    Description: Abstract Two Bio‐Argo floats measured the concentration of chlorophyll‐a, the backscattering coefficient, the fluorescence of humic‐like dissolved organic matter, dissolved oxygen, and temperature and salinity in the northern and central basins of the South China Sea for over 2 years. Temporal evolutions of bio‐optical properties were analyzed at surface, subsurface, and in the whole water column, respectively. It was found that (1) The seasonal variability of the surface chlorophyll‐a was highly controlled by photoacclimation, especially in the central basin; (2) backscattering in the upper 150 m was nearly constant, exhibiting no distinct seasonality; (3) with vertical mixing, particles from the deep chlorophyll maxima were entrained into the mixed layer resulting in enhanced surface chlorophyll during the early winter. This phenomenon may mislead a study based on satellite data which is likely to interpret it as blooming rather than a redistribution of phytoplankton within the water column; (4) analysis of a winter bloom and an anticyclonic eddy reveal that physical entrainment and biological photoacclimation modulated the vertical distributions of chlorophyll‐a and particles and potentially also changes of phytoplankton community composition; and (5) fluorescent dissolved organic matter was found to be highly coupled to phytoplankton dynamics in both basins, with a maximum (after removing the contribution of physical convective mixing) located at the depth of chlorophyll‐a subsurface maximum.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-11-28
    Description: [1]   Chiswell [2013] suggests that some of the conclusions drawn by Behrenfeld et al . [2013] are likely erroneous because of (1) the method used to calculate specific net biomass accumulation rates ( r ; d -1 ) over the seasonal cycle, (2) inconsistencies in the calculation of r and phytoplankton specific cell division rate, μ (d -1 ), and (3) uncertainties in the extrapolation of satellite data to the depth of the seasonal thermocline. Each of these concerns is addressed in the following subsections. We begin with a simple culture-based analogy that clarifies why switching between concentration-based and inventory-based expressions is required for calculating r when the mixed layer varies between shoaling and deepening conditions. This analogy is followed by a more specific mathematical treatment. We then explain why our previous comparisons between r and μ provide a conservative estimate of predator-prey coupling, followed by a discussion of uncertainties in satellite-based assessments of mixed layer phytoplankton biomass.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019
    Description: Abstract Biogeochemical Argo floats, profiling to 2,000‐m depth, are being deployed throughout the Southern Ocean by the Southern Ocean Carbon and Climate Observations and Modeling program (SOCCOM). The goal is 200 floats by 2020, to provide the first full set of annual cycles of carbon, oxygen, nitrate, and optical properties across multiple oceanographic regimes. Building from no prior coverage to a sparse array, deployments are based on prior knowledge of water mass properties, mean frontal locations, mean circulation and eddy variability, winds, air‐sea heat/freshwater/carbon exchange, prior Argo trajectories, and float simulations in the Southern Ocean State Estimate and Hybrid Coordinate Ocean Model (HYCOM). Twelve floats deployed from the 2014–2015 Polarstern cruise from South Africa to Antarctica are used as a test case to evaluate the deployment strategy adopted for SOCCOM's 20 deployment cruises and 126 floats to date. After several years, these floats continue to represent the deployment zones targeted in advance: (1) Weddell Gyre sea ice zone, observing the Antarctic Slope Front, and a decadally‐rare polynya over Maud Rise; (2) Antarctic Circumpolar Current (ACC) including the topographically steered Southern Zone chimney where upwelling carbon/nutrient‐rich deep waters produce surprisingly large carbon dioxide outgassing; (3) Subantarctic and Subtropical zones between the ACC and Africa; and (4) Cape Basin. Argo floats and eddy‐resolving HYCOM simulations were the best predictors of individual SOCCOM float pathways, with uncertainty after 2 years of order 1,000 km in the sea ice zone and more than double that in and north of the ACC.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-05-22
    Description: [1]  Satellite measurements allow global assessments of phytoplankton concentrations and, from observed temporal changes in biomass, direct access to net biomass accumulation rates ( r ). For the subarctic Atlantic basin, analysis of annual cycles in r reveal that initiation of the annual blooming-phase does not occur in spring after stratification surpasses a critical threshold, but rather in early winter when growth conditions for phytoplankton are deteriorating. This finding has been confirmed with in situ profiling float data. The objective of the current study was to test whether satellite-based annual cycles in r are reproduced by the Biogeochemical Element Cycling - Community Climate System Model and, if so, to use the additional ecosystem properties resolved by the model to better understand factors controlling phytoplankton blooms. We find that the model gives a similar early onset time for the blooming phase, that this initiation is largely due to the physical disruption of phytoplankton-grazer interactions during mixed layer deepening, and that parallel increases in phytoplankton specific division and loss rates during spring maintain the subtle disruption in food web equilibrium that ultimately yields the spring bloom climax. The link between winter mixing and bloom dynamics is illustrated by contrasting annual plankton cycles between regions with deeper and shallower mixing. We show that maximum water column inventories of phytoplankton vary in proportion to maximum winter mixing depth, implying that future reductions in winter mixing may dampen plankton cycles in the subarctic Atlantic. We propose that ecosystem disturbance-recovery sequences are a unifying property of global ocean plankton blooms.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-11-22
    Description: Phytoplankton community composition in the ocean is complex and highly variable over a wide range of space and time scales. Able to cover these scales, remote-sensing reflectance spectra can be measured both by satellite and by in situ radiometers. The spectral shape of reflectance in the open ocean is influenced by the particles in the water, mainly phytoplankton and co-varying non-algal particles. We investigate the utility of in situ hyperspectral remote-sensing reflectance measurements to detect phytoplankton pigments by using an inversion algorithm that defines phytoplankton pigment absorption as a sum of Gaussian functions. The inverted amplitudes of the Gaussian functions representing pigment absorption are compared to coincident High Performance Liquid Chromatography measurements of pigment concentration. We determined strong predictive capability for chlorophylls a, b, c 1 + c 2 , and the photoprotective carotenoids. We also tested the estimation of pigment concentrations from reflectance-derived chlorophyll a using global relationships of co-variation between chlorophyll a and the accessory pigments. We found similar errors in pigment estimation based on the relationships of co-variation versus the inversion algorithm. An investigation of spectral residuals in reflectance data after removal of chlorophyll-based average absorption spectra showed no strong relationship between spectral residuals and pigments. Ultimately, we are able to estimate concentrations of three chlorophylls and the photoprotective carotenoid pigments, noting that further work is necessary to address the challenge of extracting information from hyperspectral reflectance beyond the information that can be determined from chlorophyll a and its co-variation with other pigments.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-10-26
    Description: Highly productive kelps release abundant particulate organic matter into the nearshore environment due to their constant fragmentation and erosion by ocean waves. The contribution of kelp detritus to coastal planktonic food webs has not previously been examined. Here, we demonstrate that detritus derived from a dominant kelp in the Northeast Pacific, Nereocystis luetkeana , provides high-quality food for planktonic sea urchin larvae. Our findings challenge the paradigm that phytoplankton are the main diet for zooplankton in nearshore regions, with implications for modeling of ocean production. Furthermore, at the benthic adult stage, sea urchins can destructively graze kelps causing the kelp ecosystem to collapse; hence, our results have implications for understanding feedback mechanisms that may determine the resilience of kelp ecosystems.
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-10-16
    Description: In situ chlorophyll fluorometers have been widely employed for more than half a century, and to date, it still remains the most used instrument to estimate chlorophyll-a concentration in the field, especially for measurements onboard autonomous observation platforms, e.g., Bio-Argo floats and gliders. However, in deep waters (〉 300 m) of some specific regions, e.g., subtropical gyres and the Black Sea, the chlorophyll fluorescence profiles frequently reveal “deep sea red fluorescence” features. In line with previous studies and through the analysis of a large data set (cruise transect in the South East Pacific and data acquired by 82 Bio-Argo floats), we show that the fluorescence signal measured by a humic-like DOM fluorometer is highly correlated to the “deep sea red fluorescence.” Both fluorescence signals are indeed linearly related in deep waters. To remove the contribution of non-algal organic matter from chlorophyll fluorescence profiles, we introduce a new correction. Rather that removing a constant value (generally the deepest chlorophyll a fluorescence value from the profile, i.e., so-called “deep-offset correction”), we propose a correction method which relies on DOM fluorometry and on its variation with depth. This new method is validated with chlorophyll concentration extracted from water samples and further applied on the Bio-Argo float data set. More generally, we discuss the potential of the proposed method to become a standard and routine procedure in quality-control and correction of chlorophyll a fluorescence originating from Bio-Argo network.
    Electronic ISSN: 1541-5856
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-05-05
    Description: Chlorophyll fluorometers provide the largest in situ global data set for estimating phytoplankton biomass because of their ease of use, size, power consumption, and relatively low price. While in situ chlorophyll a (Chl) fluorescence is proxy for Chl a concentration, and hence phytoplankton biomass, there exist large natural variations in the relationship between in situ fluorescence and extracted Chl a concentration. Despite this large natural variability, we present here a global validation data set for the WET Labs Environmental Characterization Optics (ECO) series chlorophyll fluorometers that suggests a factor of 2 overestimation in the factory calibrated Chl a estimates for this specific manufacturer and series of sensors. We base these results on paired High Pressure Liquid Chromatography (HPLC) and in situ fluorescence match ups for which non-photochemically quenched fluorescence observations were removed. Additionally, we examined matchups between the factory-calibrated in situ fluorescence and estimates of chlorophyll concentration determined from in situ radiometry, absorption line height, NASA's standard ocean color algorithm as well as laboratory calibrations with phytoplankton monocultures spanning diverse species that support the factor of 2 bias. We therefore recommend the factor of 2 global bias correction be applied for the WET Labs ECO sensors, at the user level, to improve the global accuracy of chlorophyll concentration estimates and products derived from them. We recommend that other fluorometer makes and models should likewise undergo global analyses to identify potential bias in factory calibration.
    Electronic ISSN: 1541-5856
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018
    Description: Limnology and Oceanography, Page 89-90, February 2019.
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...