ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (16)
  • American Chemical Society  (12)
  • Annual Reviews  (2)
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Microbiology 58 (2004), S. 99-117 
    ISSN: 0066-4227
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Anaerobic oxidation of methane and ammonium are two different processes catalyzed by completely unrelated microorganisms. Still, the two processes do have many interesting aspects in common. First, both of them were once deemed biochemically impossible and nonexistent in nature, but have now been identified as major factors in global carbon and nitrogen cycling. Second, the microorganisms responsible for both processes cannot be grown in pure culture yet; their detection and identification were based on molecular ecology, tracer studies, use of lipid biomarkers, and enrichment cultures. Third, these microorganisms grow extremely slowly (doubling time from weeks to months). Fourth, both processes have a good potential for application in biotechnology. Because both anaerobic methane and ammonium oxidation have been separately and excellently reviewed elsewhere, we focus on aspects of interest in the context of current developments in microbiology and explore the added value of reviewing these two processes in one place.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 721 (1994), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 84 (1991), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The interconversion of adenine nucleotides during acetate fermentation was investigated with concentrated cell suspensions of Methanothrix soehngenii. Starved cells contained high levels of AMP (2.2 nmol/mg protein), but had hardly any ADP or ATP. The energy charge of these cells was 0.1. Immediately after the addition of the substrate acetate, the level of ATP increased, reaching a maximum of 1.4 nmol/mg protein, corresponding to an energy charge of 0.7 when half of the acetate was consumed. Once the acetate was depleted, the ATP concentration decreased to its original level of 0.1 nmol/mg protein. As M. soehngenii contained relatively high amounts of AMP, the luciferase system for the determination of ATP gave not always satisfactory results. Therefore a reliable method based on the separation of adenine nucleotides by anion exchange HPLC was used.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 88 (1992), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Acetate is the precursor of approximately two-thirds of the methane produced in anaerobic bioreactors. Only two genera of methanogenic archae are known to use acetate as sole energy source: Methanosarcina and Methanothrix. Methanosarcina appears to be a generalist with a high growth rate, but low affinity for acetate. Methanothrix is a specialist having a high affinity for acetate, but low growth rate. Methanothrix shows a much lower minimum threshold for acetate utilization (7–70 μM) than Methanosarcina (0.2–1.2 mM). This is consistent with the evidence that Methanothrix is found in environments with low acetate concentrations.The acetate degradation by acetotrophic methanogens starts with an activation of acetate to acetyl-coenzyme A. In Methanosarcina spp. this activation is catalysed by an acetate kinase/phosphotransacetylase system at the expense of one ATP. Acetyl-coenzyme A synthetase activates acetate in Methanothrix, with concomitant hydrolysis of one ATP to AMP and PPi. Both enzyme systems have been purified and comparison of the kinetic properties confirmed the hypothesis that low acetate concentrations favour Methanothrix. The gene encoding for acetyl-CoA synthetase of Methanothrix was isolated from a genomic library and actively expressed in Escherichia coli. The deduced amino acid sequence showed homology to proteins with similar function and contained two putative ATP binding sites.The most characteristic and complex enzyme involved in the acetate degradation by acetotrophic methanogens is carbon monoxide dehydrogenase. The enzyme has been purified from both Methanothrix and Methanosarcina, and represents 5–10% of the soluble protein of these microorganisms. CO dehydrogenase is proposed to catalyse both the cleavage of acetyl-CoA in a methyl-, carbonyl- and CoA-moiety, and the oxidation of the carbonyl group to CO2. This multifunctional redox enzyme contains several iron, acid-labile sulfur and nickel atoms. These atoms are arranged into several paramagnetic complexes, which have been studied by EPR spectroscopy. The low spin recovery of the different paramagnetic centers makes statements about structure and functions difficult. There are good spectroscopic and genetic indications that the CO dehydrogenase of Methanothrix contains at least one ferrodoxin-like [4Fe-4S] cluster, which could play a role in the electron transfer of the CO oxidation. Further, in EPR spectra of concentrated samples of CO dehydrogenase from Methanothrix a very unusual signal was observed, which showed great similarity to putative [6Fe-6S] prismane clusters.The final step in the methanogenesis from acetate, the reduction of methyl-coenzyme M, is catalysed by methyl-coenzyme M methylreductase. The enzyme purified from Methanothrix and Methanosarcina showed great homology with the methyl-CoM methylreductase of other methanogenic archae, although the specific activity was rather low (60–125 nmol min−1 mg−1).The reduction of the heterodisulfide between coenzyme M and component B is proposed to be the common site for energy conservation in all methanogens. Acetoclastic methanogens, however, need additional sites of energy conservation to compensate for their high energy input in acetate activation. The oxidation of CO to CO2 could form one possible site. The partially membrane-associated pyrophosphatase of Methanothrix could form another site of energy conservation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 233 (2004), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Anammox bacteria belong to the phylum Planctomycetes and perform anaerobic ammonium oxidation (anammox); they oxidize ammonium with nitrite as the electron acceptor to yield dinitrogen gas. The anammox reaction takes place inside the anammoxosome: an intracytoplasmic compartment bounded by a single ladderane lipid-containing membrane. The anammox bacteria, first found in a wastewater treatment plant in The Netherlands, have the potential to remove ammonium from wastewater without the addition of organic carbon. Very recently anammox bacteria were also discovered in the Black Sea where they are responsible for 30–50% of the nitrogen consumption.This review will introduce different forms of intracytoplasmic membrane systems found in prokaryotes and discuss the compartmentalization in anammox bacteria and its possible functional relation to catabolism and energy transduction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Many countries strive to reduce the emissions of nitrogen compounds (ammonia, nitrate, NOx) to the surface waters and the atmosphere. Since mainstream domestic wastewater treatment systems are usually already overloaded with ammonia, a dedicated nitrogen removal from concentrated secondary or industrial wastewaters is often more cost-effective than the disposal of such wastes to domestic wastewater treatment. The cost-effectiveness of separate treatment has increased dramatically in the past few years, since several processes for the biological removal of ammonia from concentrated waste streams have become available. Here, we review those processes that make use of new concepts in microbiology: partial nitrification, nitrifier denitrification and anaerobic ammonia oxidation (the anammox process). These processes target the removal of ammonia from gases, and ammonium-bicarbonate from concentrated wastewaters (i.e. sludge liquor and landfill leachate). The review addresses the microbiology, its consequences for their application, the current status regarding application, and the future developments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 158 (1998), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Hydrazine is rarely found as an intermediate in microbial nitrogen conversions. In this study the conversion of hydrazine by the anaerobic ammonium oxidation (Anammox) culture, in which hydrazine has been proposed as an intermediate, was investigated. This study demonstrated the biological nature of hydrazine conversion by the Anammox culture. In batch cultures with hydrazine it was observed that 3 mol N2H4 was disproportionated to 4 mol NH+4 and 1 mol N2. Hydrazine with nitrite as an electron acceptor showed a conversion of 3 mol N2H4 and 4 mol NO−2 to 5 mol N2, with a specific activity of 5.5 nmol min−1 (mg volatile suspended solids)−1. Addition of hydrazine to a biofilm reactor for 80 days showed that it was not possible to grow Anammox with hydrazine.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: From recent research it has become clear that at least two different possibilities for anaerobic ammonium oxidation exist in nature. ‘Aerobic’ ammonium oxidizers like Nitrosomonas eutropha were observed to reduce nitrite or nitrogen dioxide with hydroxylamine or ammonium as electron donor under anoxic conditions. The maximum rate for anaerobic ammonium oxidation was about 2 nmol NH+4 min−1 (mg protein)−1 using nitrogen dioxide as electron acceptor. This reaction, which may involve NO as an intermediate, is thought to generate energy sufficient for survival under anoxic conditions, but not for growth. A novel obligately anaerobic ammonium oxidation (Anammox) process was recently discovered in a denitrifying pilot plant reactor. From this system, a highly enriched microbial community with one dominating peculiar autotrophic organism was obtained. With nitrite as electron acceptor a maximum specific oxidation rate of 55 nmol NH+4 min−1 (mg protein)−1 was determined. Although this reaction is 25-fold faster than in Nitrosomonas, it allowed growth at a rate of only 0.003 h−1 (doubling time 11 days). 15N labeling studies showed that hydroxylamine and hydrazine were important intermediates in this new process. A novel type of hydroxylamine oxidoreductase containing an unusual P468 cytochrome has been purified from the Anammox culture. Microsensor studies have shown that at the oxic/anoxic interface of many ecosystems nitrite and ammonia occur in the absence of oxygen. In addition, the number of reports on unaccounted high nitrogen losses in wastewater treatment is gradually increasing, indicating that anaerobic ammonium oxidation may be more widespread than previously assumed. The recently developed nitrification systems in which oxidation of nitrite to nitrate is prevented form an ideal partner for the Anammox process. The combination of these partial nitrification and Anammox processes remains a challenge for future application in the removal of ammonium from wastewater with high ammonium concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 27 (1998), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Recently, the single reactor system for high activity ammonia removal over nitrite (SHARON) process was developed for the removal of ammonia from wastewater with high ammonia concentrations. In contrast to normal systems, this nitrifying reactor system is operated at relatively high temperatures (35°C) without sludge retention. Classical methods to describe the microbial community present in the reactor failed and, therefore, the microorganisms responsible for ammonia removal in this single reactor system were investigated using several complementary molecular biological techniques. The results obtained via these molecular methods were in good agreement with each other and demonstrated successful monitoring of microbial diversity. Denaturing gradient gel electrophoresis of 16S rRNA PCR products proved to be an effective technique to estimate rapidly the presence of at least four different types of bacteria in the SHARON reactor. In addition, analysis of a 16S rRNA gene library revealed that there was one dominant (69%) clone which was highly similar (98.8%) to Nitrosomonas eutropha. Of the other clones, 14% could be assigned to new members of the Cytophaga/Flexibacter group. These data were qualitatively and quantitatively confirmed by two independent microscopic methods. The presence of about 70% ammonia oxidizing bacteria was demonstrated using a fluorescent oligonucleotide probe (NEU) targeted against the 16S rRNA of the Nitrosomonas cluster. Electron microscopic pictures showed the typical morphology of ammonia oxidizers in the majority of the cells from the SHARON reactor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...