ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-01-27
    Description: The prolific Los Angeles basin in California may be the most petroliferous province on Earth per volume of sedimentary fill. However, because most exploration in the basin occurred prior to the advent of modern geochemical methods, genetic relationships among the various petroleum accumulations and their source rocks have remained speculative. A training set of 24 source-related biomarker and stable carbon isotope ratios for 111 non- or mildly biodegraded oil samples from the basin was used to construct a chemometric (multivariate statistics) decision tree. The decision tree allows genetic classification of additional oil or source-rock extract samples that might be collected. The decision tree identifies 6 tribes and a total of 12 genetically distinct oil families. The families have different bulk properties, such as API gravity and sulfur content, which were previously explained as resulting from secondary processes, including thermal maturity or biodegradation. However, the chemometric assignments are based on genetic properties that reflect distinct organofacies. The oil families occur in different locations and reservoir intervals in the basin, consistent with their origins from different organofacies of active source rock. The source-rock depositional environment for each oil family can be inferred using biomarker and isotope ratios. The samples show stable carbon isotope ratios for saturate and aromatic hydrocarbons that indicate different organofacies of Miocene marine source rocks. Tribes 1 and 2 straddle the central trough, mainly occur east of the Newport-Inglewood fault zone (NIFZ), and show evidence of proximal, clay-rich source rock deposited under suboxic conditions with elevated angiosperm input. Tribes 3–6 occur west of the NIFZ and show evidence of more distal, clay-poor source rock deposited under anoxic conditions. Geochemistry and stratigraphy of the oil tribes (1–6 below) suggest the following source-rock organofacies:
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-07
    Description: Some recent publications promote one-run, open-system pyrolysis experiments using a single heating rate (ramp) and fixed frequency factor to determine the petroleum generation kinetics of source-rock samples because, compared to multiple-ramp experiments, the method is faster, less expensive, and presumably yields similar results. Some one-ramp pyrolysis experiments yield kinetic results similar to those from multiple-ramp experiments. However, our data for 52 worldwide source rocks containing types I, II, IIS, II/III, and III kerogen illustrate that one-ramp kinetics introduce the potential for significant error that can be avoided by using high-quality kinetic measurements and multiple-ramp experiments in which the frequency factor is optimized by the kinetic software rather than fixed at some universal value. The data show that kinetic modeling based on a discrete activation energy distribution and three different pyrolysis temperature ramps closely approximates that determined from additional runs, provided the three ramps span an appropriate range of heating rates. For some source rocks containing well-preserved kerogen and having narrow activation energy distributions, both single- and multiple-ramp discrete models are insufficient, and nucleation-growth models are necessary. Instrument design, thermocouple size or orientation, and sample weight likely influence the acceptable upper limit of pyrolysis heating rate. Caution is needed for ramps of 30–50°C/min, which can cause temperature errors due to impaired heat transfer between the oven, sample, and thermocouple. Compound volatility may inhibit pyrolyzate yield at the lowest heating rates, depending on the effectiveness of the gas sweep. We recommend at least three pyrolysis ramps that span at least a 20-fold variation of comparatively lower rates, such as 1, 5, and 25°C/min. The product of heating rate and sample size should not exceed ~100 mg °C/min. Our results do not address the more fundamental questions of whether kinetic models based on multiple-ramp open-system pyrolysis are mechanistically appropriate for use in basin simulators or whether petroleum migration through the kerogen network, rather than cracking of organic matter, represents the rate-limiting step in expulsion.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-19
    Description: The recognition, correlation, and quantification of oil mixtures remain challenging in petroleum system studies. Most prolific basins have multiple source rocks that generate petroleum over wide ranges of maturity. Compound-specific isotopic analyses of alkanes (CSIA-A) and diamondoids (CSIA-D) are very effective for determining hydrocarbon mixtures. Quantitative diamondoid analysis (QDA) and CSIA-D provide a unique advantage for source correlation of thermally altered liquids or condensates and for condensate mixtures with black oil. Biomarker fingerprints, QDA, and various CSIA methods were applied to 37 oil and condensate samples to investigate the existence of deep sources and to identify and deconvolute cosourced oil mixtures. The data were used to unravel the components of mixed oil having widely diverse levels of maturity in the north–central West Siberian basin. Three oil families and their locations are recognized in the basin. One of the families appears to be composed of oil mixtures derived from two end-member families that originated from the Upper Jurassic Bazhenov and Lower to Middle Jurassic Tyumen source rocks. Our results suggest that a significant part of the gas in the giant gas fields of north–central western Siberia (e.g., Urengoi and Yamburg) is of thermogenic origin. The source of this thermal gas, which was formerly assigned to various source origins, was determined to be the Tyumen Formation. Some samples in the basin also show mixtures of noncracked Bazhenov oil with cracked Tyumen condensate. The area where prevalent oil cracking has occurred was determined from QDA.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-21
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-06-12
    Description: Forty-one crude oil samples from the North Slope of Alaska have variable diamondoid and biomarker concentrations, indicating different extents of oil cracking. Some of the samples are mixtures of high- and low-maturity components containing high concentrations of both diamondoids and biomarkers. Compound-specific isotope analysis of diamondoids (CSIAD) shows that the Shublik Formation accounts for the higher maturity component in several mixed oil samples, whereas biomarkers, especially those providing information on the age of the source rock, show either a Cretaceous Hue-gamma ray zone (GRZ) or Triassic Shublik source for the lower maturity component. Oil samples in this study mainly correlate to six source rocks based on their biomarker characteristics and CSIAD. Chemometrics of selected source-related biomarker and isotope ratios helps to classify the oil samples into different genetic families. The source rocks include carbonate and shale organofacies of the Triassic Shublik Formation, Jurassic Kingak Shale, Lower Cretaceous Pebble shale, Lower Cretaceous Hue-GRZ, and Cenozoic Canning Formation. Oil presumed to originate from a seventh source rock interval, the Carboniferous–Permian Lisburne Group, was not clearly differentiated from well-established Shublik oil by any geochemical age-related parameter or CSIAD, which suggests that the Lisburne is not an effective source rock for any of the studied oil samples. Four oil samples collected from wells located north of the Barrow arch show unique biomarker characteristics, but age-related biomarker parameters indicate likely Triassic source rock organofacies that is not represented by any of the samples from south of the arch. The source rock for these four oil samples appears to be a clay-rich equivalent of the calcareous Shublik Formation that occurs to the north of the Barrow arch.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-01-03
    Description: Chemometric analyses of geochemical data for 165 crude oil samples from the San Joaquin Basin identify genetically distinct oil families and their inferred source rocks and provide insight into migration pathways, reservoir compartments, and filling histories. In the first part of the study, 17 source-related biomarker and stable carbon-isotope ratios were evaluated using a chemometric decision tree (CDT) to identify families. In the second part, ascendant hierarchical clustering was applied to terpane mass chromatograms for the samples to compare with the CDT results. The results from the two methods are remarkably similar despite differing data input and assumptions. Recognized source rocks for the oil families include the (1) Eocene Kreyenhagen Formation, (2) Eocene Tumey Formation, (3–4) upper and lower parts of the Miocene Monterey Formation (Buttonwillow depocenter), and (5–6) upper and lower parts of the Miocene Monterey Formation (Tejon depocenter). Ascendant hierarchical clustering identifies 22 oil families in the basin as corroborated by independent data, such as carbon-isotope ratios, sample location, reservoir unit, and thermal maturity maps from a three-dimensional basin and petroleum system model. Five families originated from the Eocene Kreyenhagen Formation source rock, and three families came from the overlying Eocene Tumey Formation. Fourteen families migrated from the upper and lower parts of the Miocene Monterey Formation source rocks within the Buttonwillow and Tejon depocenters north and south of the Bakersfield arch. The Eocene and Miocene families show little cross-stratigraphic migration because of seals within and between the source rocks. The data do not exclude the possibility that some families described as originating from the Monterey Formation actually came from source rock in the Temblor Formation.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...