ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-04
    Description: This article concentrates on the question, Which parameters govern recovery factor (RF) behavior in channelized turbidite reservoirs? The objective is to provide guidelines for the static and dynamic modeling of coarse reservoir-scale models by providing a ranking of the investigated geologic and reservoir engineering parameters based on their relative impact on RF. Once high-importance (H) parameters are understood, then one can incorporate them into static and dynamic models by placing them explicitly into the geologic model. Alternatively, one can choose to represent their effects using effective properties (e.g., pseudorelative permeabilities). More than 1700 flow simulations were performed on geologically realistic three-dimensional sector models at outcrop-scale resolution. Waterflooding, gas injection, and depletion scenarios were simulated for each geologic realization. Geologic and reservoir engineering parameters are grouped based on their impact on RF into H, intermediate-importance (M), and low-importance (L) categories. The results show that, in turbidite channel reservoirs, dynamic performance is governed by architectural parameters such as channel width, net-to-gross, and degree of amalgamation, and parameters that describe the distribution of shale drapes, particularly along the base of channel elements. The conclusions of our study are restricted to light oils and relatively high-permeability channelized turbidite reservoirs. The knowledge developed in our extensive simulation study enables the development of a geologically consistent and efficient dynamic modeling approach. We briefly describe a methodology for generating effective properties at multiple geologic scales, incorporating the effect of channel architecture and reservoir connectivity into fast simulation models.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-17
    Description: This study evaluates the proportion, length, and effective properties of thin (0.003–0.7 m [0.01–2.3 ft]) shale beds and drapes in tidally influenced channels within a compound valley fill with a focus on estimating geologically based effective rock properties. The Cretaceous Ferron Sandstone is an outcrop analog for fluvial–tidal systems with primary reservoirs being deposited as tidally influenced valley filling point bars. The study outcrops expose three valley systems in Neilson Wash of Utah. Light detection and ranging–derived digital outcrop models have been used to characterize shale length, width, thickness, and frequency of each valley fill succession. Long, uncommon, and anisotropic shales in valley 1 (V1) were deposited in a braided setting with little tidal influence. In contrast, shales in valley 2 (V2) were abundant, short, common, and equidimensional, suggesting deposition by more tidally influenced meandering rivers. Short, frequent, and equidimensional shales in valley 3 (V3) were deposited in single-thread meandering rivers with less tidal influence. A sandstone–shale model was used to estimate the effects of shales on vertical to horizontal permeability ratio ( \[{k}_{v}/{k}_{h} \] ). The unique character of each depositional unit was reflected in resultant \[{k}_{v}/{k}_{h} \] distributions. The valley fill deposits, V1, V2, and V3, had average \[{k}_{v}/{k}_{h} \] ratios of 0.11, 0.09, and 0.17, respectively. More tidally influenced reservoirs such as the studied V2 had short but frequent shales, which resulted in low \[{k}_{v}/{k}_{h} \] estimates. Estimates of \[{k}_{v}/{k}_{h} \] for valleys that predominantly contained fluvial point bar deposits with lesser tidal influence (V1 and V3) were higher. The results of this study highlight the link between shale heterogeneity, reservoir architecture, and inferred flow parameters.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...