ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (4)
  • 1
    Publication Date: 2011-02-26
    Description: Metarhizium anisopliae infects mosquitoes through the cuticle and proliferates in the hemolymph. To allow M. anisopliae to combat malaria in mosquitoes with advanced malaria infections, we produced recombinant strains expressing molecules that target sporozoites as they travel through the hemolymph to the salivary glands. Eleven days after a Plasmodium-infected blood meal, mosquitoes were treated with M. anisopliae expressing salivary gland and midgut peptide 1 (SM1), which blocks attachment of sporozoites to salivary glands; a single-chain antibody that agglutinates sporozoites; or scorpine, which is an antimicrobial toxin. These reduced sporozoite counts by 71%, 85%, and 90%, respectively. M. anisopliae expressing scorpine and an [SM1](8):scorpine fusion protein reduced sporozoite counts by 98%, suggesting that Metarhizium-mediated inhibition of Plasmodium development could be a powerful weapon for combating malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153607/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153607/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fang, Weiguo -- Vega-Rodriguez, Joel -- Ghosh, Anil K -- Jacobs-Lorena, Marcelo -- Kang, Angray -- St Leger, Raymond J -- 5R21A1079429-02/PHS HHS/ -- R01 AI031478/AI/NIAID NIH HHS/ -- R21 AI079429/AI/NIAID NIH HHS/ -- R21 AI088033/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 25;331(6020):1074-7. doi: 10.1126/science.1199115.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350178" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles gambiae/*microbiology/*parasitology/physiology ; Antibodies, Protozoan/immunology ; Base Sequence ; Cloning, Molecular ; Defensins/genetics/metabolism ; Feeding Behavior ; Female ; Hemolymph/metabolism/microbiology/parasitology ; Humans ; Insect Vectors/*microbiology/*parasitology/physiology ; Malaria, Falciparum/transmission ; Metarhizium/*genetics/physiology ; Molecular Sequence Data ; Oligopeptides/genetics/metabolism ; Organisms, Genetically Modified ; Pest Control, Biological ; Plasmodium falciparum/*physiology ; Protozoan Proteins/immunology ; Salivary Glands/metabolism/parasitology ; Spores, Fungal/physiology ; Sporozoites/physiology ; Transformation, Genetic ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈p〉Mitochondria are highly dynamic organelles. Through a large-scale in vivo RNA interference (RNAi) screen that covered around a quarter of the 〈i〉Drosophila melanogaster〈/i〉 genes (4000 genes), we identified 578 genes whose knockdown led to aberrant shapes or distributions of mitochondria. The complex analysis revealed that knockdown of the subunits of proteasomes, spliceosomes, and the electron transport chain complexes could severely affect mitochondrial morphology. The loss of 〈i〉Dhpr〈/i〉, a gene encoding an enzyme catalyzing tetrahydrobiopterin regeneration, leads to a reduction in the numbers of tyrosine hydroxylase neurons, shorter lifespan, and gradual loss of muscle integrity and climbing ability. The affected mitochondria in 〈i〉Dhpr〈/i〉 mutants are swollen and have fewer cristae, probably due to lower levels of Drp1 S-nitrosylation. Overexpression of Drp1, but not of S-nitrosylation–defective Drp1, rescued 〈i〉Dhpr〈/i〉 RNAi-induced mitochondrial defects. We propose that Dhpr regulates mitochondrial morphology and tissue homeostasis by modulating S-nitrosylation of Drp1.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈p〉Tailored metal nanoclusters have been actively developed to manipulate light at the subwavelength scale for nanophotonic applications. Nevertheless, precise arrangement of molecules in a hot spot with fixed numbers and positions remains challenging. Here, we show that DNA origami metamolecules with Fano resonances (DMFR) can precisely localize single dye molecules and produce quantified surface-enhanced Raman scattering (SERS) responses. To enable tailored plasmonic permutations, we develop a general and programmable method for anchoring a set of large gold nanoparticles (L-AuNPs) on prescribed 〈i〉n〈/i〉-tuple docking sites of super-origami DNA frameworks. A tetrameric nanocluster with four spatially organized 80-nm L-AuNPs exhibits peak-and-dip Fano characteristics. The drastic enhancement at the wavelength of the Fano minimum allows the collection of prominent SERS spectrum for even a single dye molecule. We expect that DMFR provides physical insights into single-molecule SERS and opens new opportunities for developing plasmonic nanodevices for ultrasensitive sensing, nanocircuits, and nanophotonic lasers.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈p〉Although monolayer transition metal dichalcogenides (TMDs) have direct bandgaps, the low room-temperature photoluminescence quantum yields (QYs), especially under high pump intensity, limit their practical applications. Here, we use a simple photoactivation method to enhance the room-temperature QYs of monolayer MoS〈sub〉2〈/sub〉 grown on to silica micro/nanofibers by more than two orders of magnitude in a wide pump dynamic range. The high-density oxygen dangling bonds released from the tapered micro/nanofiber surface are the key to this strong enhancement of QYs. As the pump intensity increases from 10〈sup〉–1〈/sup〉 to 10〈sup〉4〈/sup〉 W cm〈sup〉–2〈/sup〉, our photoactivated monolayer MoS〈sub〉2〈/sub〉 exhibits QYs from ~30 to 1% while maintaining high environmental stability, allowing direct lasing with greatly reduced thresholds down to 5 W cm〈sup〉–2〈/sup〉. Our strategy can be extended to other TMDs and offers a solution to the most challenging problem toward the realization of efficient and stable light emitters at room temperature based on these atomically thin materials.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...