ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (1)
  • 1
    Publication Date: 2015-08-01
    Description: Jumping on water is a unique locomotion mode found in semi-aquatic arthropods, such as water striders. To reproduce this feat in a surface tension-dominant jumping robot, we elucidated the hydrodynamics involved and applied them to develop a bio-inspired impulsive mechanism that maximizes momentum transfer to water. We found that water striders rotate the curved tips of their legs inward at a relatively low descending velocity with a force just below that required to break the water surface (144 millinewtons/meter). We built a 68-milligram at-scale jumping robotic insect and verified that it jumps on water with maximum momentum transfer. The results suggest an understanding of the hydrodynamic phenomena used by semi-aquatic arthropods during water jumping and prescribe a method for reproducing these capabilities in artificial systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koh, Je-Sung -- Yang, Eunjin -- Jung, Gwang-Pil -- Jung, Sun-Pill -- Son, Jae Hak -- Lee, Sang-Im -- Jablonski, Piotr G -- Wood, Robert J -- Kim, Ho-Young -- Cho, Kyu-Jin -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):517-21. doi: 10.1126/science.aab1637. Epub 2015 Jul 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biorobotics Laboratory, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea. School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA. hyk@snu.ac.kr kjcho@snu.ac.kr. ; Micro Fluid Mechanics Laboratory, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea. hyk@snu.ac.kr kjcho@snu.ac.kr. ; Biorobotics Laboratory, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea. ; Laboratory of Behavioral Ecology and Evolution, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea. ; Laboratory of Behavioral Ecology and Evolution, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea. Institute of Advanced Machines and Design, Seoul National University, Seoul 151-744, Korea. ; Laboratory of Behavioral Ecology and Evolution, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea. Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw 00-679, Poland. ; School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA. ; Micro Fluid Mechanics Laboratory, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea. Institute of Advanced Machines and Design, Seoul National University, Seoul 151-744, Korea. ; Biorobotics Laboratory, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea. Institute of Advanced Machines and Design, Seoul National University, Seoul 151-744, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228144" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomechanical Phenomena ; Extremities/physiology ; Heteroptera/*physiology ; Hydrodynamics ; *Locomotion ; Robotics ; Rotation ; Surface Tension ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...