ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (1)
  • 1
    Publication Date: 2017-07-27
    Description: Donor spins in silicon are highly competitive qubits for upcoming quantum technologies, offering complementary metal-oxide semiconductor compatibility, coherence ( T 2 ) times of minutes to hours, and simultaneous initialization, manipulation, and readout fidelities near ~99.9%. This allows for many quantum error correction protocols, which will be essential for scale-up. However, a proven method of reliably coupling spatially separated donor qubits has yet to be identified. We present a scalable silicon-based platform using the unique optical properties of "deep" chalcogen donors. For the prototypical 77 Se + donor, we measure lower bounds on the transition dipole moment and excited-state lifetime, enabling access to the strong coupling limit of cavity quantum electrodynamics using known silicon photonic resonator technology and integrated silicon photonics. We also report relatively strong photon emission from this same transition. These results unlock clear pathways for silicon-based quantum computing, spin-to-photon conversion, photonic memories, integrated single-photon sources, and all-optical switches.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...