ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-11-03
    Description: During spliceosome assembly, splicing factor 1 (SF1) specifically recognizes the intron branch point sequence (BPS) UACUAAC in the pre-mRNA transcripts. We show that the KH-QUA2 region of SF1 defines an enlarged KH (hn RNP K) fold which is necessary and sufficient for BPS binding. The 3' part of the BPS (UAAC), including the conserved branch point adenosine (underlined), is specifically recognized in a hydrophobic cleft formed by the Gly-Pro-Arg-Gly motif and the variable loop of the KH domain. The QUA2 region recognizes the 5' nucleotides of the BPS (ACU). The branch point adenosine acting as the nucleophile in the first biochemical step of splicing is deeply buried. BPS RNA recognition suggests how SF1 may facilitate subsequent formation of the prespliceosomal complex A.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Z -- Luyten, I -- Bottomley, M J -- Messias, A C -- Houngninou-Molango, S -- Sprangers, R -- Zanier, K -- Kramer, A -- Sattler, M -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1098-102.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691992" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/chemistry/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; *DNA-Binding Proteins ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; *Introns ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Precursors/chemistry/*metabolism ; RNA, Messenger/chemistry/*metabolism ; RNA-Binding Proteins/*chemistry/genetics/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Spliceosomes/metabolism ; *Transcription Factors ; Uracil/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-02-14
    Description: Heterodimerization between members of the Bcl-2 family of proteins is a key event in the regulation of programmed cell death. The molecular basis for heterodimer formation was investigated by determination of the solution structure of a complex between the survival protein Bcl-xL and the death-promoting region of the Bcl-2-related protein Bak. The structure and binding affinities of mutant Bak peptides indicate that the Bak peptide adopts an amphipathic alpha helix that interacts with Bcl-xL through hydrophobic and electrostatic interactions. Mutations in full-length Bak that disrupt either type of interaction inhibit the ability of Bak to heterodimerize with Bcl-xL.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sattler, M -- Liang, H -- Nettesheim, D -- Meadows, R P -- Harlan, J E -- Eberstadt, M -- Yoon, H S -- Shuker, S B -- Chang, B S -- Minn, A J -- Thompson, C B -- Fesik, S W -- P01 A135294/PHS HHS/ -- R37 CA48023/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Feb 14;275(5302):983-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9020082" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Apoptosis ; Crystallography, X-Ray ; Dimerization ; Magnetic Resonance Spectroscopy ; Membrane Proteins/*chemistry/genetics/metabolism ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Structure, Secondary ; Proto-Oncogene Proteins/*chemistry/metabolism ; *Proto-Oncogene Proteins c-bcl-2 ; Sequence Deletion ; bcl-2 Homologous Antagonist-Killer Protein ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-08-10
    Description: The heteropolyanions of W, Mo, and V, which have found numerous applications, are formed simply by acidification of solutions of their oxoanions. Under similar conditions, these oxoanion precursors are not available for Nb, and Nb-oxo chemistry is dominated by formation of the Lindquist ion [Nb6O19]8- only. However, heteropolyniobate formation is favored in hydrothermal reactions of aqueous, alkaline precursor mixtures. Here we give two examples of heteropolyniobates formed by this general reaction type: K12[Ti2O2][SiNb12O40].16H2O [1], which contains chains of silicododecaniobate Keggin ions, and Na14[H2Si4Nb16O56].45.5H2O [2], a new heteropolyanion structure type.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nyman, May -- Bonhomme, Francois -- Alam, Todd M -- Rodriguez, Mark A -- Cherry, Brian R -- Krumhansl, James L -- Nenoff, Tina M -- Sattler, Amy M -- New York, N.Y. -- Science. 2002 Aug 9;297(5583):996-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sandia National Laboratories, Albuquerque, NM 87185, USA. mdnyman@sandia.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12169730" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-07-01
    Description: Discrimination between splice sites and similar, nonsplice sequences is essential for correct intron removal and messenger RNA formation in eukaryotes. The 65- and 35-kD subunits of the splicing factor U2AF, U2AF65 and U2AF35, recognize, respectively, the pyrimidine-rich tract and the conserved terminal AG present at metazoan 3' splice sites. We report that DEK, a chromatin- and RNA-associated protein mutated or overexpressed in certain cancers, enforces 3' splice site discrimination by U2AF. DEK phosphorylated at serines 19 and 32 associates with U2AF35, facilitates the U2AF35-AG interaction and prevents binding of U2AF65 to pyrimidine tracts not followed by AG. DEK and its phosphorylation are required for intron removal, but not for splicing complex assembly, which indicates that proofreading of early 3' splice site recognition influences catalytic activation of the spliceosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soares, Luis Miguel Mendes -- Zanier, Katia -- Mackereth, Cameron -- Sattler, Michael -- Valcarcel, Juan -- New York, N.Y. -- Science. 2006 Jun 30;312(5782):1961-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Regulacio Genomica, Passeig Maritim 37-49, 08003 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809543" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Chromosomal Proteins, Non-Histone/genetics/*metabolism ; Dimerization ; Dinucleoside Phosphates/metabolism ; HeLa Cells ; Humans ; *Introns ; Mutation ; Nuclear Proteins/*metabolism ; Oncogene Proteins/genetics/*metabolism ; Phosphorylation ; Pyrimidines/metabolism ; RNA Precursors/*metabolism ; *RNA Splicing ; RNA, Messenger/metabolism ; Recombinant Proteins/metabolism ; Ribonucleoprotein, U2 Small Nuclear ; Ribonucleoproteins/*metabolism ; Spliceosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-06-27
    Description: Three Siamese cats were found to have a progressive neurological disease that became obvious when they were 4 to 5 months of age. Their brains contained an excess of GM2 and GM3 gangliosides, and their livers a nine- to tenfold excess of sphingomyelin and cholesterol. A total deficiency of lysosomal (pH 5.0) sphingomyelinase was found in the leukocytes, liver, and brain of the cats, although the activity of the microsomal (pH 7.4, magnesium-dependent) sphingomyelinase was normal in brain. These cats appear to have a genetic disease identical to Niemann-Pick disease type A.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wenger, D A -- Sattler, M -- Kudoh, T -- Snyder, S P -- Kingston, R S -- New York, N.Y. -- Science. 1980 Jun 27;208(4451):1471-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7189903" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/enzymology ; Brain Chemistry ; Cat Diseases/enzymology/*genetics ; Cats ; *Disease Models, Animal ; Gangliosides/analysis ; Humans ; Kinetics ; Liver/analysis ; Niemann-Pick Diseases/enzymology/*genetics ; Phospholipids/analysis ; Sphingomyelin Phosphodiesterase/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...