ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1994-08-05
    Description: The high-mobility group protein 14 (HMG-14) is a non-histone chromosomal protein that is preferentially associated with transcriptionally active chromatin. To assess the effect of HMG-14 on transcription by RNA polymerase II, in vivo-assembled chromatin with elevated amounts of HMG-14 was obtained. Here it is shown that HMG-14 enhanced transcription on chromatin templates but not on DNA templates. This protein stimulated the rate of elongation by RNA polymerase II but not the level of initiation of transcription. These findings suggest that the association of HMG-14 with nucleosomes is part of the cellular process involved in the generation of transcriptionally active chromatin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, H F -- Rimsky, S -- Batson, S C -- Bustin, M -- Hansen, U -- GM-36667/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Aug 5;265(5173):796-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Genetics, Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8047885" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/metabolism ; HeLa Cells ; High Mobility Group Proteins/*physiology ; Humans ; Kinetics ; RNA Polymerase II/*metabolism ; Simian virus 40/genetics ; Templates, Genetic ; Transcription, Genetic/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-05-07
    Description: The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bustin, Michael -- Misteli, Tom -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2016 May 6;352(6286):aad6933. doi: 10.1126/science.aad6933.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Cancer Institute, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27151873" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1982-03-05
    Description: The relative amounts of autoantibodies against defined nucleosomal proteins present in serums from patients with systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and mixed connective tissue disease (MCTD) have been examined by an enzyme-linked immunoassay. Autoantibodies to nucleosomal proteins were detected in 45 percent of the patients with SLE, 18 percent of the MCTD patients, and none of the RA patients. The results suggest that, in SLE, antibodies are formed against a subset of nucleosomes which contain protein HMG-17.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bustin, M -- Reisch, J -- Einck, L -- Klippel, J H -- New York, N.Y. -- Science. 1982 Mar 5;215(4537):1245-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6460317" target="_blank"〉PubMed〈/a〉
    Keywords: Arthritis, Rheumatoid/immunology ; Autoimmune Diseases/*immunology ; Chromosomal Proteins, Non-Histone/*immunology ; High Mobility Group Proteins ; Humans ; Lupus Erythematosus, Systemic/immunology ; Mixed Connective Tissue Disease/immunology ; Nucleosomes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...