ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈p〉The p27 protein is a canonical negative regulator of cell proliferation and acts primarily by inhibiting cyclin-dependent kinases (CDKs). Under some circumstances, p27 is associated with active CDK4, but no mechanism for activation has been described. We found that p27, when phosphorylated by tyrosine kinases, allosterically activated CDK4 in complex with cyclin D1 (CDK4-CycD1). Structural and biochemical data revealed that binding of phosphorylated p27 (phosp27) to CDK4 altered the kinase adenosine triphosphate site to promote phosphorylation of the retinoblastoma tumor suppressor protein (Rb) and other substrates. Surprisingly, purified and endogenous phosp27-CDK4-CycD1 complexes were insensitive to the CDK4-targeting drug palbociclib. Palbociclib instead primarily targeted monomeric CDK4 and CDK6 (CDK4/6) in breast tumor cells. Our data characterize phosp27-CDK4-CycD1 as an active Rb kinase that is refractory to clinically relevant CDK4/6 inhibitors.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-10-18
    Description: Unfolded proteins in the endoplasmic reticulum cause trans-autophosphorylation of the bifunctional transmembrane kinase Ire1, which induces its endoribonuclease activity. The endoribonuclease initiates nonconventional splicing of HAC1 messenger RNA to trigger the unfolded-protein response (UPR). We explored the role of Ire1's kinase domain by sensitizing it through site-directed mutagenesis to the ATP-competitive inhibitor 1NM-PP1. Paradoxically, rather than being inhibited by 1NM-PP1, drug-sensitized Ire1 mutants required 1NM-PP1 as a cofactor for activation. In the presence of 1NM-PP1, drug-sensitized Ire1 bypassed mutations that inactivate its kinase activity and induced a full UPR. Thus, rather than through phosphorylation per se, a conformational change in the kinase domain triggered by occupancy of the active site with a ligand leads to activation of all known downstream functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Papa, Feroz R -- Zhang, Chao -- Shokat, Kevan -- Walter, Peter -- AI44009/AI/NIAID NIH HHS/ -- GM32384/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1533-7. Epub 2003 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Francisco, CA 94143-2200, USA. frpapa@medicine.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14564015" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/pharmacology ; Adenosine Triphosphate/analogs & derivatives/chemistry/*metabolism/pharmacology ; Basic-Leucine Zipper Transcription Factors ; Binding Sites ; Binding, Competitive ; Cytosol/metabolism ; Dithiothreitol/pharmacology ; Endoplasmic Reticulum/*metabolism ; Endoribonucleases/metabolism ; Enzyme Activation ; Ligands ; Membrane Glycoproteins/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Models, Biological ; Mutagenesis, Site-Directed ; Phosphorylation ; Protein Conformation ; *Protein Folding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/antagonists & ; inhibitors/*chemistry/genetics/*metabolism ; Pyrazoles/chemistry/*metabolism/*pharmacology ; Pyrimidines/chemistry/*metabolism/*pharmacology ; RNA Splicing ; RNA, Messenger/genetics/metabolism ; Repressor Proteins/genetics/metabolism ; Saccharomyces cerevisiae Proteins/antagonists & ; inhibitors/*chemistry/genetics/*metabolism ; Signal Transduction ; Structure-Activity Relationship ; Substrate Specificity ; Transcription Factors/genetics/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...