ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-06-13
    Description: Rotavirus outer-layer protein VP7 is a principal target of protective antibodies. Removal of free calcium ions (Ca2+) dissociates VP7 trimers into monomers, releasing VP7 from the virion, and initiates penetration-inducing conformational changes in the other outer-layer protein, VP4. We report the crystal structure at 3.4 angstrom resolution of VP7 bound with the Fab fragment of a neutralizing monoclonal antibody. The Fab binds across the outer surface of the intersubunit contact, which contains two Ca2+ sites. Mutations that escape neutralization by other antibodies suggest that the same region bears the epitopes of most neutralizing antibodies. The monovalent Fab is sufficient to neutralize infectivity. We propose that neutralizing antibodies against VP7 act by stabilizing the trimer, thereby inhibiting the uncoating trigger for VP4 rearrangement. A disulfide-linked trimer is a potential subunit immunogen.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995306/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995306/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aoki, Scott T -- Settembre, Ethan C -- Trask, Shane D -- Greenberg, Harry B -- Harrison, Stephen C -- Dormitzer, Philip R -- AI-21362/AI/NIAID NIH HHS/ -- CA-13202/CA/NCI NIH HHS/ -- DK-56339/DK/NIDDK NIH HHS/ -- R37 CA013202/CA/NCI NIH HHS/ -- R37 CA013202-38/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Jun 12;324(5933):1444-7. doi: 10.1126/science.1170481.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Medicine, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19520960" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology/metabolism ; Antibodies, Viral/chemistry/*immunology/metabolism ; Antigens, Viral/*chemistry/genetics/*immunology/metabolism ; Binding Sites ; Binding Sites, Antibody ; Calcium/metabolism ; Capsid Proteins/*chemistry/genetics/*immunology/metabolism ; Crystallography, X-Ray ; Epitopes/immunology ; Immunoglobulin Fab Fragments/chemistry/*immunology/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Neutralization Tests ; Protein Folding ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Subunits ; Recombinant Proteins/chemistry ; Rotavirus/*chemistry/immunology ; Serotyping
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-04-05
    Description: Rotaviruses are the leading cause of severe gastroenteritis and dehydrating diarrhea in young children and animals worldwide. A murine model and "backpack tumor" transplantation were used to determine the protective effect of antibodies against VP4(an outer capsid viral protein) and VP6(a major inner capsid viral protein). Only two non-neutralizing immunoglobulin A (IgA) antibodies to VP6 were capable of preventing primary and resolving chronic murine rotavirus infections. These antibodies were not active, however, when presented directly to the luminal side of the intestinal tract. These findings support the hypothesis that in vivo intracellular viral inactivation by secretory IgA during transcytosis is a mechanism of host defense against rotavirus infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burns, J W -- Siadat-Pajouh, M -- Krishnaney, A A -- Greenberg, H B -- DK38707/DK/NIDDK NIH HHS/ -- R37AI21362/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1996 Apr 5;272(5258):104-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Stanford University School of Medicine, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8600516" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/administration & dosage/*immunology/metabolism ; Antibodies, Viral/administration & dosage/*immunology/metabolism ; *Antigens, Viral ; Capsid/*immunology ; *Capsid Proteins ; Feces/chemistry/virology ; Hybridomas ; Ileum/immunology/virology ; Immunization, Passive ; Immunoglobulin A, Secretory/administration & dosage/*immunology/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, SCID ; Neutralization Tests ; Rotavirus/*immunology/physiology ; Rotavirus Infections/*immunology/prevention & control/virology ; Virus Replication ; Virus Shedding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1980-01-11
    Description: A strain of type 2 human rotavirus (Wa) was grown to relatively high titer through 14 passages in primary cultures of African green monkey kidney (AGMK) cells. This passage series was initiated with virus that had been passaged 11 times serially in newborn gnotobiotic piglets. In contrast, virus present in the stool of patient Wa as well as virus from the first, second, or third passage in piglets could not be propagated successfully in African green monkey kidney cells. Prior to each passage in cell culture, the virus was treated with trypsin and the inoculated cultures were centrifuged at low speed. Cultivation of a type 2 human rotavirus should aid attempts to characterize this virus and to develop a means of immunoprophylaxis for a serious diarrheal disease of human infants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wyatt, R G -- James, W D -- Bohl, E H -- Theil, K W -- Saif, L J -- Kalica, A R -- Greenberg, H B -- Kapikian, A Z -- Chanock, R M -- New York, N.Y. -- Science. 1980 Jan 11;207(4427):189-91.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6243190" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Viral/analysis ; Cells, Cultured ; Diarrhea, Infantile/microbiology ; Germ-Free Life ; Haplorhini ; Humans ; Infant ; RNA Viruses/*growth & development ; Rotavirus/*growth & development/immunology ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...