ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1996-03-08
    Description: The transition metal ion copper(II) has a critical role in chronic neurologic diseases. The amyloid precursor protein (APP) of Alzheimer's disease or a synthetic peptide representing its copper-binding site reduced bound copper(II) to copper(I). This copper ion-mediated redox reaction led to disulfide bond formation in APP, which indicated that free sulfhydryl groups of APP were involved. Neither superoxide nor hydrogen peroxide had an effect on the kinetics of copper(II) reduction. The reduction of copper(II) to copper(I) by APP involves an electron-transfer reaction and could enhance the production of hydroxyl radicals, which could then attack nearby sites. Thus, copper-mediated toxicity may contribute to neurodegeneration in Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Multhaup, G -- Schlicksupp, A -- Hesse, L -- Beher, D -- Ruppert, T -- Masters, C L -- Beyreuther, K -- New York, N.Y. -- Science. 1996 Mar 8;271(5254):1406-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ZMBH-Center for Molecular Biology Heidelberg, University of Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596911" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*metabolism ; Amyloid beta-Protein Precursor/antagonists & inhibitors/chemistry/*metabolism ; Binding Sites ; Copper/*metabolism ; Cysteine/chemistry ; Cystine/metabolism ; Electron Transport ; Ferric Compounds/metabolism ; Histidine/chemistry ; Humans ; Hydrogen Peroxide/metabolism ; Hydroxyl Radical/metabolism ; Mass Spectrometry ; Oligopeptides/pharmacology ; Oxidation-Reduction ; Peptide Fragments/chemistry/metabolism ; Recombinant Fusion Proteins/metabolism ; Superoxides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-09-02
    Description: A beta 1-40, a major component of Alzheimer's disease cerebral amyloid, is present in the cerebrospinal fluid and remains relatively soluble at high concentrations (less than or equal to 3.7 mM). Thus, physiological factors which induce A beta amyloid formation could provide clues to the pathogenesis of the disease. It has been shown that human A beta specifically and saturably binds zinc. Here, concentrations of zinc above 300 nM rapidly destabilized human A beta 1-40 solutions, inducing tinctorial amyloid formation. However, rat A beta 1-40 binds zinc less avidly and is immune to these effects, perhaps explaining the scarcity with which these animals form cerebral A beta amyloid. These data suggest a role for cerebral zinc metabolism in the neuropathogenesis of Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bush, A I -- Pettingell, W H -- Multhaup, G -- d Paradis, M -- Vonsattel, J P -- Gusella, J F -- Beyreuther, K -- Masters, C L -- Tanzi, R E -- R01 AG11899-01/AG/NIA NIH HHS/ -- R01 NS30428-03/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1994 Sep 2;265(5177):1464-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics and Aging, Massachusetts General Hospital, Boston.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8073293" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/etiology/*metabolism ; Amyloid beta-Peptides/chemistry/*metabolism ; Animals ; Brain/metabolism ; Edetic Acid/pharmacology ; Humans ; Kinetics ; Mice ; Peptide Fragments/chemistry/*metabolism ; Rats ; Solubility ; Zinc/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈p〉A blood-based assessment of preclinical disease would have huge potential in the enrichment of participants for Alzheimer’s disease (AD) therapeutic trials. In this study, cognitively unimpaired individuals from the AIBL and KARVIAH cohorts were defined as Aβ negative or Aβ positive by positron emission tomography. Nontargeted proteomic analysis that incorporated peptide fractionation and high-resolution mass spectrometry quantified relative protein abundances in plasma samples from all participants. A protein classifier model was trained to predict Aβ-positive participants using feature selection and machine learning in AIBL and independently assessed in KARVIAH. A 12-feature model for predicting Aβ-positive participants was established and demonstrated high accuracy (testing area under the receiver operator characteristic curve = 0.891, sensitivity = 0.78, and specificity = 0.77). This extensive plasma proteomic study has unbiasedly highlighted putative and novel candidates for AD pathology that should be further validated with automated methodologies.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...