ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-04-27
    Description: Little is known of how plant disease resistance (R) proteins recognize pathogens and activate plant defenses. Rcr3 is specifically required for the function of Cf-2, a Lycopersicon pimpinellifolium gene bred into cultivated tomato (Lycopersicon esculentum) for resistance to Cladosporium fulvum. Rcr3 encodes a secreted papain-like cysteine endoprotease. Genetic analysis shows Rcr3 is allelic to the L. pimpinellifolium Ne gene, which suppresses the Cf-2-dependent autonecrosis conditioned by its L. esculentum allele, ne (necrosis). Rcr3 alleles from these two species encode proteins that differ by only seven amino acids. Possible roles of Rcr3 in Cf-2-dependent defense and autonecrosis are discussed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kruger, Julia -- Thomas, Colwyn M -- Golstein, Catherine -- Dixon, Mark S -- Smoker, Matthew -- Tang, Saijun -- Mulder, Lonneke -- Jones, Jonathan D G -- New York, N.Y. -- Science. 2002 Apr 26;296(5568):744-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11976458" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; Cladosporium/*physiology ; Cloning, Molecular ; Cysteine Endopeptidases/chemistry/*genetics/*metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Gene Expression Regulation, Plant ; *Genes, Plant ; Immunity, Innate ; Leucine/analogs & derivatives/pharmacology ; Lycopersicon esculentum/*enzymology/genetics/*microbiology/physiology ; Molecular Sequence Data ; Mutation ; Phenotype ; *Plant Diseases ; Plant Leaves/enzymology ; Plant Proteins/*metabolism ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Recombinant Fusion Proteins/chemistry/metabolism ; Tobacco/genetics ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-08-30
    Description: Plant disease-resistance (R) proteins are thought to function as receptors for ligands produced directly or indirectly by pathogen avirulence (Avr) proteins. The biochemical functions of most Avr proteins are unknown, and the mechanisms by which they activate R proteins have not been determined. In Arabidopsis, resistance to Pseudomonas syringae strains expressing AvrPphB requires RPS5, a member of the class of R proteins that have a predicted nucleotide-binding site and leucine-rich repeats, and PBS1, a protein kinase. AvrPphB was found to proteolytically cleave PBS1, and this cleavage was required for RPS5-mediated resistance, which indicates that AvrPphB is detected indirectly via its enzymatic activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shao, Feng -- Golstein, Catherine -- Ade, Jules -- Stoutemyer, Mark -- Dixon, Jack E -- Innes, Roger W -- DK18849/DK/NIDDK NIH HHS/ -- GM46451/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 29;301(5637):1230-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Medical School and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947197" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*metabolism/microbiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Bacterial Proteins/chemistry/genetics/*metabolism ; Carrier Proteins/genetics/metabolism ; Cell Line ; Cysteine Endopeptidases/chemistry/genetics/*metabolism ; Genes, Bacterial ; Genes, Plant ; Genetic Complementation Test ; Humans ; Models, Biological ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Plant Diseases/*microbiology ; Plant Extracts/metabolism ; Plant Proteins/genetics/metabolism ; Plants, Genetically Modified ; Precipitin Tests ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Pseudomonas/*metabolism ; Recombinant Proteins/metabolism ; Tobacco/genetics/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...