ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-05-04
    Description: The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial information, and in the real world (RW). In VR, place cells showed robust spatial selectivity; however, only 20% were track active, compared with 45% in the RW. This indicates that distal visual and nonvestibular self-motion cues are sufficient to provide selectivity, but vestibular and other sensory cues present in RW are necessary to fully activate the place-cell population. In addition, bidirectional cells preferentially encoded distance along the track in VR, while encoding absolute position in RW. Taken together, these results suggest the differential contributions of these sensory cues in shaping the hippocampal population code. Theta frequency was reduced, and its speed dependence was abolished in VR, but phase precession was unaffected, constraining mechanisms governing both hippocampal theta oscillations and temporal coding. These results reveal cooperative and competitive interactions between sensory cues for control over hippocampal spatiotemporal selectivity and theta rhythm.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049564/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049564/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravassard, Pascal -- Kees, Ashley -- Willers, Bernard -- Ho, David -- Aharoni, Daniel -- Cushman, Jesse -- Aghajan, Zahra M -- Mehta, Mayank R -- 5R01MH092925-02/MH/NIMH NIH HHS/ -- R01 MH092925/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 14;340(6138):1342-6. doi: 10.1126/science.1232655. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W. M. Keck Center for Neurophysics, Integrative Center for Learning and Memory, and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641063" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Cues ; Hippocampus/*physiology ; Male ; Rats ; Rats, Inbred LEC ; *Space Perception ; *Spatial Behavior ; Theta Rhythm ; *Time Perception ; User-Computer Interface
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...