ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6)
  • American Association for the Advancement of Science (AAAS)  (6)
Collection
  • Articles  (6)
  • 1
    Publication Date: 1998-12-18
    Description: FhuA, the receptor for ferrichrome-iron in Escherichia coli, is a member of a family of integral outer membrane proteins, which, together with the energy-transducing protein TonB, mediate the active transport of ferric siderophores across the outer membrane of Gram-negative bacteria. The three-dimensional structure of FhuA is presented here in two conformations: with and without ferrichrome-iron at resolutions of 2.7 and 2.5 angstroms, respectively. FhuA is a beta barrel composed of 22 antiparallel beta strands. In contrast to the typical trimeric arrangement found in porins, FhuA is monomeric. Located within the beta barrel is a structurally distinct domain, the "cork," which mainly consists of a four-stranded beta sheet and four short alpha helices. A single lipopolysaccharide molecule is noncovalently associated with the membrane-embedded region of the protein. Upon binding of ferrichrome-iron, conformational changes are transduced to the periplasmic pocket of FhuA, signaling the ligand-loaded status of the receptor. Sequence homologies and mutagenesis data are used to propose a structural mechanism for TonB-dependent siderophore-mediated transport across the outer membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferguson, A D -- Hofmann, E -- Coulton, J W -- Diederichs, K -- Welte, W -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2215-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec, Canada H3A 2B4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856937" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/metabolism ; Bacterial Proteins/chemistry/metabolism ; Binding Sites ; Biological Transport, Active ; Cell Membrane/chemistry/metabolism ; Crystallography, X-Ray ; Diffusion ; Escherichia coli/*chemistry/metabolism ; *Escherichia coli Proteins ; Ferric Compounds/*metabolism ; Ferrichrome/*metabolism ; Hydrogen Bonding ; Ligands ; Lipopolysaccharides/*metabolism ; Membrane Proteins/chemistry/metabolism ; Models, Molecular ; *Protein Conformation ; Protein Structure, Secondary ; Receptors, Virus/*chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-12-20
    Description: Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates the development of and the cytotoxic activity of white blood cells. Recombinant human GM-CSF has proven useful in the treatment of blood disorders. The structure of GM-CSF, which was determined at 2.4 angstrom resolution by x-ray crystallography, has a novel fold combining a two-stranded antiparallel beta sheet with an open bundle of four alpha helices. Residues implicated in receptor recognition, which are distant in the primary sequence, are on adjacent alpha helices in the folded protein. A working model for the receptor binding site is presented.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diederichs, K -- Boone, T -- Karplus, P A -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1779-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1837174" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Granulocyte-Macrophage Colony-Stimulating Factor/*chemistry/metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/*chemistry/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-09-02
    Description: The AcrA/AcrB/TolC complex spans the inner and outer membranes of Escherichia coli and serves as its major drug-resistance pump. Driven by the proton motive force, it mediates the efflux of bile salts, detergents, organic solvents, and many structurally unrelated antibiotics. Here, we report a crystallographic structure of trimeric AcrB determined at 2.9 and 3.0 angstrom resolution in space groups that allow asymmetry of the monomers. This structure reveals three different monomer conformations representing consecutive states in a transport cycle. The structural data imply an alternating access mechanism and a novel peristaltic mode of drug transport by this type of transporter.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seeger, Markus A -- Schiefner, Andre -- Eicher, Thomas -- Verrey, Francois -- Diederichs, Kay -- Pos, Klaas M -- New York, N.Y. -- Science. 2006 Sep 1;313(5791):1295-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Physiology and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16946072" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Transport ; Crystallization ; Crystallography, X-Ray ; Diffusion ; Drug Resistance, Multiple, Bacterial ; Escherichia coli/*chemistry/drug effects ; Escherichia coli Proteins/*chemistry/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; Multidrug Resistance-Associated Proteins/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-05-26
    Description: In macromolecular x-ray crystallography, refinement R values measure the agreement between observed and calculated data. Analogously, R(merge) values reporting on the agreement between multiple measurements of a given reflection are used to assess data quality. Here, we show that despite their widespread use, R(merge) values are poorly suited for determining the high-resolution limit and that current standard protocols discard much useful data. We introduce a statistic that estimates the correlation of an observed data set with the underlying (not measurable) true signal; this quantity, CC*, provides a single statistically valid guide for deciding which data are useful. CC* also can be used to assess model and data quality on the same scale, and this reveals when data quality is limiting model improvement.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457925/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457925/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karplus, P Andrew -- Diederichs, Kay -- DK056649/DK/NIDDK NIH HHS/ -- GM083136/GM/NIGMS NIH HHS/ -- R01 DK056649/DK/NIDDK NIH HHS/ -- R01 GM083136/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 May 25;336(6084):1030-3. doi: 10.1126/science.1218231.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22628654" target="_blank"〉PubMed〈/a〉
    Keywords: *Crystallography, X-Ray ; Cysteine Dioxygenase/*chemistry ; Data Interpretation, Statistical ; *Models, Molecular ; *Protein Conformation ; Proteins/*chemistry ; Research Design
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-04-30
    Description: In the crystal structure of the membrane-embedded rotor ring of the sodium ion-translocating adenosine 5'-triphosphate (ATP) synthase of Ilyobacter tartaricus at 2.4 angstrom resolution, 11 c subunits are assembled into an hourglass-shaped cylinder with 11-fold symmetry. Sodium ions are bound in a locked conformation close to the outer surface of the cylinder near the middle of the membrane. The structure supports an ion-translocation mechanism in the intact ATP synthase in which the binding site converts from the locked conformation into one that opens toward subunit a as the rotor ring moves through the subunit a/c interface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meier, Thomas -- Polzer, Patrick -- Diederichs, Kay -- Welte, Wolfram -- Dimroth, Peter -- New York, N.Y. -- Science. 2005 Apr 29;308(5722):659-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Mikrobiologie, Eidgenossische Technische Hochschule (ETH), Zurich Honggerberg, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15860619" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/metabolism ; Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Cytoplasm/metabolism ; Fusobacteria/*enzymology ; Glutamic Acid/chemistry/metabolism ; Hydrophobic and Hydrophilic Interactions ; Ion Transport ; Models, Molecular ; Molecular Motor Proteins/*chemistry/metabolism ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Sodium/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-06-21
    Description: Peridinin-chlorophyll-protein, a water-soluble light-harvesting complex that has a blue-green absorbing carotenoid as its main pigment, is present in most photosynthetic dinoflagellates. Its high-resolution (2.0 angstrom) x-ray structure reveals a noncrystallographic trimer in which each polypeptide contains an unusual jellyroll fold of the alpha-helical amino- and carboxyl-terminal domains. These domains constitute a scaffold with pseudo-twofold symmetry surrounding a hydrophobic cavity filled by two lipid, eight peridinin, and two chlorophyll a molecules. The structural basis for efficient excitonic energy transfer from peridinin to chlorophyll is found in the clustering of peridinins around the chlorophylls at van der Waals distances.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hofmann, E -- Wrench, P M -- Sharples, F P -- Hiller, R G -- Welte, W -- Diederichs, K -- New York, N.Y. -- Science. 1996 Jun 21;272(5269):1788-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fakultat fur Biologie, Universitat Konstanz, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650577" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carotenoids/*chemistry ; Chlorophyll/chemistry ; Crystallography, X-Ray ; Dinoflagellida/*chemistry/metabolism ; Energy Transfer ; Hydrogen Bonding ; Models, Molecular ; Molecular Conformation ; Photosynthesis ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protozoan Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...