ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-12-22
    Description: Alzheimer's disease (AD) has a substantial inflammatory component, and activated microglia may play a central role in neuronal degeneration. CD40 expression was increased on cultured microglia treated with freshly solublized amyloid-beta (Abeta, 500 nanomolar) and on microglia from a transgenic murine model of AD (Tg APPsw). Increased tumor necrosis factor alpha production and induction of neuronal injury occurred when Abeta-stimulated microglia were treated with CD40 ligand (CD40L). Microglia from Tg APPsw mice deficient for CD40L demonstrated reduction in activation, suggesting that the CD40-CD40L interaction is necessary for Abeta-induced microglial activation. Finally, abnormal tau phosphorylation was reduced in Tg APPsw animals deficient for CD40L, suggesting that the CD40-CD40L interaction is an early event in AD pathogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, J -- Town, T -- Paris, D -- Mori, T -- Suo, Z -- Crawford, F -- Mattson, M P -- Flavell, R A -- Mullan, M -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2352-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Roskamp Institute, University of South Florida, 3515 East Fletcher Avenue, Tampa, FL 33613, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600748" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/metabolism ; Amyloid beta-Peptides/*metabolism/pharmacology ; Animals ; Antigens, CD40/biosynthesis/*metabolism ; CD40 Ligand ; Cell Death ; Cells, Cultured ; Interferon-gamma/pharmacology ; Interleukins/pharmacology ; Ligands ; Membrane Glycoproteins/*metabolism/pharmacology ; Mice ; Mice, Transgenic ; Microglia/cytology/immunology/*metabolism ; Neurons/cytology ; Peptide Fragments/pharmacology ; Phosphorylation ; Signal Transduction ; Tumor Necrosis Factor-alpha/biosynthesis/pharmacology ; tau Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-13
    Description: The mechanical mismatch between soft neural tissues and stiff neural implants hinders the long-term performance of implantable neuroprostheses. Here, we designed and fabricated soft neural implants with the shape and elasticity of dura mater, the protective membrane of the brain and spinal cord. The electronic dura mater, which we call e-dura, embeds interconnects, electrodes, and chemotrodes that sustain millions of mechanical stretch cycles, electrical stimulation pulses, and chemical injections. These integrated modalities enable multiple neuroprosthetic applications. The soft implants extracted cortical states in freely behaving animals for brain-machine interface and delivered electrochemical spinal neuromodulation that restored locomotion after paralyzing spinal cord injury.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Minev, Ivan R -- Musienko, Pavel -- Hirsch, Arthur -- Barraud, Quentin -- Wenger, Nikolaus -- Moraud, Eduardo Martin -- Gandar, Jerome -- Capogrosso, Marco -- Milekovic, Tomislav -- Asboth, Leonie -- Torres, Rafael Fajardo -- Vachicouras, Nicolas -- Liu, Qihan -- Pavlova, Natalia -- Duis, Simone -- Larmagnac, Alexandre -- Voros, Janos -- Micera, Silvestro -- Suo, Zhigang -- Courtine, Gregoire -- Lacour, Stephanie P -- New York, N.Y. -- Science. 2015 Jan 9;347(6218):159-63. doi: 10.1126/science.1260318.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Centre for Neuroprosthetics, Institute of Microengineering and Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. ; International Paraplegic Foundation Chair in Spinal Cord Repair, Centre for Neuroprosthetics and Brain Mind Institute, EPFL, Switzerland. Pavlov Institute of Physiology, St. Petersburg, Russia. ; International Paraplegic Foundation Chair in Spinal Cord Repair, Centre for Neuroprosthetics and Brain Mind Institute, EPFL, Switzerland. ; Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, EPFL, Lausanne, Switzerland. ; Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Centre for Neuroprosthetics, Institute of Microengineering and Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. International Paraplegic Foundation Chair in Spinal Cord Repair, Centre for Neuroprosthetics and Brain Mind Institute, EPFL, Switzerland. ; School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, USA. ; Laboratory for Biosensors and Bioelectronics, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland. ; Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, EPFL, Lausanne, Switzerland. The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy. ; International Paraplegic Foundation Chair in Spinal Cord Repair, Centre for Neuroprosthetics and Brain Mind Institute, EPFL, Switzerland. gregoire.courtine@epfl.ch stephanie.lacour@epfl.ch. ; Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Centre for Neuroprosthetics, Institute of Microengineering and Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. gregoire.courtine@epfl.ch stephanie.lacour@epfl.ch.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25574019" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocompatible Materials/therapeutic use ; Brain-Computer Interfaces ; Drug Delivery Systems/*methods ; *Dura Mater ; Elasticity ; Electric Stimulation/*methods ; Electrochemotherapy/*methods ; *Electrodes, Implanted ; Locomotion ; Mice ; Mice, Inbred Strains ; Motor Cortex/physiopathology ; Multimodal Imaging ; Neurons/physiology ; Paralysis/etiology/physiopathology/*therapy ; Platinum ; *Prostheses and Implants ; Silicon ; Spinal Cord/physiopathology ; Spinal Cord Injuries/complications/physiopathology/*therapy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...