ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (6)
  • Models, Molecular  (4)
  • Humans
  • Pertussis toxin
  • American Association for the Advancement of Science (AAAS)  (8)
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-04-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milligan, G -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):65-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10766637" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclase Inhibitors ; Adenylyl Cyclases/metabolism ; Animals ; Cell Line ; Cerebral Cortex/metabolism ; Corpus Striatum/metabolism ; Dimerization ; Energy Transfer ; Fluorescence ; GTP-Binding Proteins/*metabolism ; Ligands ; Rats ; Receptor Cross-Talk ; Receptors, Dopamine D1/metabolism ; Receptors, Dopamine D2/agonists/*metabolism ; Receptors, Dopamine D5 ; Receptors, GABA-A/metabolism ; Receptors, Somatostatin/agonists/*metabolism ; Signal Transduction ; Somatostatin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-09-14
    Description: For 40 million years, diatoms have dominated the reverse weathering of silica on Earth. These photosynthetic protists take up dissolved silicic acid from the water and precipitate opaline silica to form their cell wall. We show that the biosilica of diatoms is an effective pH buffer, enabling the enzymatic conversion of bicarbonate to CO2, an important step in inorganic carbon acquisition by these organisms. Because diatoms are responsible for one-quarter of global primary production and for a large fraction of the carbon exported to the deep sea, the global cycles of Si and C may be linked mechanistically.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milligan, Allen J -- Morel, Francois M M -- New York, N.Y. -- Science. 2002 Sep 13;297(5588):1848-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12228711" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bicarbonates/metabolism ; Buffers ; Carbon Dioxide/metabolism ; Carbonic Anhydrase II/metabolism ; Carbonic Anhydrases/isolation & purification/*metabolism ; Catalysis ; Cattle ; Cell Wall ; Chemical Precipitation ; Chlamydomonas/metabolism ; Diatoms/*metabolism ; Hydrogen-Ion Concentration ; Mass Spectrometry ; *Protons ; Seawater ; Silicon Dioxide/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: The microtubule-based kinesin motors and actin-based myosin motors generate motions associated with intracellular trafficking, cell division, and muscle contraction. Early studies suggested that these molecular motors work by very different mechanisms. Recently, however, it has become clear that kinesin and myosin share a common core structure and convert energy from adenosine triphosphate into protein motion using a similar conformational change strategy. Many different types of mechanical amplifiers have evolved that operate in conjunction with the conserved core. This modular design has given rise to a remarkable diversity of kinesin and myosin motors whose motile properties are optimized for performing distinct biological functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vale, R D -- Milligan, R A -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):88-95.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA. vale@phy.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753125" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Cytoskeleton/metabolism ; Evolution, Molecular ; Kinesin/chemistry/*physiology ; Microtubules/metabolism ; Models, Biological ; Models, Molecular ; Molecular Motor Proteins/chemistry/*physiology ; Myosins/chemistry/*physiology ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1991-12-09
    Description: The three-dimensional structure of an active, disulfide cross-linked dimer of the ligand-binding domain of the Salmonella typhimurium aspartate receptor and that of an aspartate complex have been determined by x-ray crystallographic methods at 2.4 and 2.0 angstrom (A) resolution, respectively. A single subunit is a four-alpha-helix bundle with two long amino-terminal and carboxyl-terminal helices and two shorter helices that form a cylinder 20 A in diameter and more than 70 A long. The two subunits in the disulfide-bonded dimer are related by a crystallographic twofold axis in the apo structure, but by a noncrystallographic twofold axis in the aspartate complex structure. The latter structure reveals that the ligand binding site is located more than 60 A from the presumed membrane surface and is at the interface of the two subunits. Aspartate binds between two alpha helices from one subunit and one alpha helix from the other in a highly charged pocket formed by three arginines. The comparison of the apo and aspartate complex structures shows only small structural changes in the individual subunits, except for one loop region that is disordered, but the subunits appear to change orientation relative to each other. The structures of the two forms of this protein provide a step toward understanding the mechanisms of transmembrane signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milburn, M V -- Prive, G G -- Milligan, D L -- Scott, W G -- Yeh, J -- Jancarik, J -- Koshland, D E Jr -- Kim, S H -- AI 30725/AI/NIAID NIH HHS/ -- DK09765/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 29;254(5036):1342-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1660187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aspartic Acid/metabolism ; Binding Sites ; Disulfides/analysis ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; *Receptors, Amino Acid ; Receptors, Cell Surface/*chemistry/metabolism ; Salmonella typhimurium/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-12-17
    Description: Dynein motors move various cargos along microtubules within the cytoplasm and power the beating of cilia and flagella. An unusual feature of dynein is that its microtubule-binding domain (MTBD) is separated from its ring-shaped AAA+ adenosine triphosphatase (ATPase) domain by a 15-nanometer coiled-coil stalk. We report the crystal structure of the mouse cytoplasmic dynein MTBD and a portion of the coiled coil, which supports a mechanism by which the ATPase domain and MTBD may communicate through a shift in the heptad registry of the coiled coil. Surprisingly, functional data suggest that the MTBD, and not the ATPase domain, is the main determinant of the direction of dynein motility.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663340/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663340/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, Andrew P -- Garbarino, Joan E -- Wilson-Kubalek, Elizabeth M -- Shipley, Wesley E -- Cho, Carol -- Milligan, Ronald A -- Vale, Ronald D -- Gibbons, I R -- GM30401-29/GM/NIGMS NIH HHS/ -- GM52468/GM/NIGMS NIH HHS/ -- P01 AR042895/AR/NIAMS NIH HHS/ -- P01 AR042895-15/AR/NIAMS NIH HHS/ -- P01-AR42895/AR/NIAMS NIH HHS/ -- P41 RR-17573/RR/NCRR NIH HHS/ -- R01 GM097312/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Dec 12;322(5908):1691-5. doi: 10.1126/science.1164424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19074350" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Dyneins/*chemistry/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Image Processing, Computer-Assisted ; Mice ; Microscopy, Electron ; Microtubules/*metabolism/ultrastructure ; Models, Molecular ; Molecular Sequence Data ; Movement ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-10-01
    Description: On the basis of a carbon isotopic record of both marine carbonates and organic matter from the Triassic-Jurassic boundary to the present, we modeled oxygen concentrations over the past 205 million years. Our analysis indicates that atmospheric oxygen approximately doubled over this period, with relatively rapid increases in the early Jurassic and the Eocene. We suggest that the overall increase in oxygen, mediated by the formation of passive continental margins along the Atlantic Ocean during the opening phase of the current Wilson cycle, was a critical factor in the evolution, radiation, and subsequent increase in average size of placental mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Falkowski, Paul G -- Katz, Miriam E -- Milligan, Allen J -- Fennel, Katja -- Cramer, Benjamin S -- Aubry, Marie Pierre -- Berner, Robert A -- Novacek, Michael J -- Zapol, Warren M -- New York, N.Y. -- Science. 2005 Sep 30;309(5744):2202-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ 08901, USA. falko@imcs.rutgers.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16195457" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Atmosphere ; *Biological Evolution ; Biomass ; Body Size ; Carbon/analysis ; Carbon Dioxide/analysis ; Carbon Isotopes/analysis ; Carbonates ; Fossils ; Geologic Sediments/chemistry ; *Mammals/anatomy & histology/physiology ; Oxidation-Reduction ; *Oxygen/analysis ; Photosynthesis ; Phytoplankton/physiology ; Placenta/physiology ; Regression Analysis ; Reproduction ; Sulfur Isotopes/analysis ; Temperature ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-03-30
    Description: Blood lymphocyte numbers, essential for the development of efficient immune responses, are maintained by recirculation through secondary lymphoid organs. We show that lymphocyte trafficking is altered by the lysophospholipid sphingosine-1-phosphate (S1P) and by a phosphoryl metabolite of the immunosuppressive agent FTY720. Both species were high-affinity agonists of at least four of the five S1P receptors. These agonists produce lymphopenia in blood and thoracic duct lymph by sequestration of lymphocytes in lymph nodes, but not spleen. S1P receptor agonists induced emptying of lymphoid sinuses by retention of lymphocytes on the abluminal side of sinus-lining endothelium and inhibition of egress into lymph. Inhibition of lymphocyte recirculation by activation of S1P receptors may result in therapeutically useful immunosuppression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mandala, Suzanne -- Hajdu, Richard -- Bergstrom, James -- Quackenbush, Elizabeth -- Xie, Jenny -- Milligan, James -- Thornton, Rosemary -- Shei, Gan-Ju -- Card, Deborah -- Keohane, CarolAnn -- Rosenbach, Mark -- Hale, Jeffrey -- Lynch, Christopher L -- Rupprecht, Kathleen -- Parsons, William -- Rosen, Hugh -- New York, N.Y. -- Science. 2002 Apr 12;296(5566):346-9. Epub 2002 Mar 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Rheumatology, Merck Research Laboratories, Post Office Box 2000, Rahway, NJ 07065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11923495" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/drug effects/*physiology ; Binding, Competitive ; CHO Cells ; Calcium/metabolism ; Cricetinae ; Cyclic AMP/metabolism ; Fingolimod Hydrochloride ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Humans ; Immunosuppressive Agents/metabolism/pharmacology ; Ligands ; Lymph Nodes/cytology/drug effects ; Lymphocyte Count ; Lymphopenia/chemically induced ; *Lysophospholipids ; Mice ; Organophosphates/chemical synthesis/chemistry/metabolism/*pharmacology ; Organophosphonates/chemical synthesis/chemistry/metabolism/*pharmacology ; Phosphorylation ; Propylene Glycols/*metabolism/pharmacology ; Rats ; Receptors, Cell Surface/*agonists/metabolism ; *Receptors, G-Protein-Coupled ; Receptors, Lysophospholipid ; Sphingosine/*analogs & derivatives/metabolism/*pharmacology ; Spleen/cytology/drug effects ; Stereoisomerism ; T-Lymphocytes/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-10-30
    Description: Ribosomes are self-assembling macromolecular machines that translate DNA into proteins, and an understanding of ribosome biogenesis is central to cellular physiology. Previous studies on the Escherichia coli 30S subunit suggest that ribosome assembly occurs via multiple parallel pathways rather than through a single rate-limiting step, but little mechanistic information is known about this process. Discovery single-particle profiling (DSP), an application of time-resolved electron microscopy, was used to obtain more than 1 million snapshots of assembling 30S subunits, identify and visualize the structures of 14 assembly intermediates, and monitor the population flux of these intermediates over time. DSP results were integrated with mass spectrometry data to construct the first ribosome-assembly mechanism that incorporates binding dependencies, rate constants, and structural characterization of populated intermediates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990404/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990404/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mulder, Anke M -- Yoshioka, Craig -- Beck, Andrea H -- Bunner, Anne E -- Milligan, Ronald A -- Potter, Clinton S -- Carragher, Bridget -- Williamson, James R -- GM-52468/GM/NIGMS NIH HHS/ -- P41 RR017573/RR/NCRR NIH HHS/ -- P41 RR017573-10/RR/NCRR NIH HHS/ -- R01 GM052468/GM/NIGMS NIH HHS/ -- R01 GM052468-16/GM/NIGMS NIH HHS/ -- R01 RR023093/RR/NCRR NIH HHS/ -- R01 RR023093-09/RR/NCRR NIH HHS/ -- R37 GM053757/GM/NIGMS NIH HHS/ -- R37 GM053757-16/GM/NIGMS NIH HHS/ -- R37-GM-53757/GM/NIGMS NIH HHS/ -- RR023093/RR/NCRR NIH HHS/ -- RR175173/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):673-7. doi: 10.1126/science.1193220.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030658" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Image Processing, Computer-Assisted ; Kinetics ; Mass Spectrometry ; Microscopy, Electron/methods ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; RNA, Bacterial/chemistry ; RNA, Ribosomal/chemistry ; Ribosomal Proteins/chemistry/*metabolism ; Ribosome Subunits, Small, Bacterial/chemistry/*metabolism/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...