ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • *Evolution, Molecular  (3)
  • American Association for the Advancement of Science (AAAS)  (3)
  • Chemistry and Pharmacology  (3)
  • Mathematics
  • 1
    Publication Date: 2001-07-07
    Description: To illuminate the function and evolutionary history of both genomes, we sequenced mouse DNA related to human chromosome 19. Comparative sequence alignments yielded confirmatory evidence for hypothetical genes and identified exons, regulatory elements, and candidate genes that were missed by other predictive methods. Chromosome-wide comparisons revealed a difference between single-copy HSA19 genes, which are overwhelmingly conserved in mouse, and genes residing in tandem familial clusters, which differ extensively in number, coding capacity, and organization between the two species. Finally, we sequenced breakpoints of all 15 evolutionary rearrangements, providing a view of the forces that drive chromosome evolution in mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dehal, P -- Predki, P -- Olsen, A S -- Kobayashi, A -- Folta, P -- Lucas, S -- Land, M -- Terry, A -- Ecale Zhou, C L -- Rash, S -- Zhang, Q -- Gordon, L -- Kim, J -- Elkin, C -- Pollard, M J -- Richardson, P -- Rokhsar, D -- Uberbacher, E -- Hawkins, T -- Branscomb, E -- Stubbs, L -- New York, N.Y. -- Science. 2001 Jul 6;293(5527):104-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DOE Joint Genome Institute, Walnut Creek, CA 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11441184" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Breakage/genetics ; Chromosomes, Human, Pair 19/*genetics ; Conserved Sequence/*genetics ; Contig Mapping ; DNA, Satellite/genetics ; *Evolution, Molecular ; Exons/genetics ; Expressed Sequence Tags ; Gene Dosage ; Gene Order/genetics ; Genetic Linkage/genetics ; Genome ; Humans ; Long Interspersed Nucleotide Elements/genetics ; Mice ; Multigene Family/genetics ; Open Reading Frames/genetics ; Phylogeny ; Sequence Alignment ; Sequence Analysis, DNA ; Short Interspersed Nucleotide Elements/genetics ; Terminal Repeat Sequences/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-07-29
    Description: Comparative genomics of 45 epidemiologically varied variola virus isolates from the past 30 years of the smallpox era indicate low sequence diversity, suggesting that there is probably little difference in the isolates' functional gene content. Phylogenetic clustering inferred three clades coincident with their geographical origin and case-fatality rate; the latter implicated putative proteins that mediate viral virulence differences. Analysis of the viral linear DNA genome suggests that its evolution involved direct descent and DNA end-region recombination events. Knowing the sequences will help understand the viral proteome and improve diagnostic test precision, therapeutics, and systems for their assessment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Esposito, Joseph J -- Sammons, Scott A -- Frace, A Michael -- Osborne, John D -- Olsen-Rasmussen, Melissa -- Zhang, Ming -- Govil, Dhwani -- Damon, Inger K -- Kline, Richard -- Laker, Miriam -- Li, Yu -- Smith, Geoffrey L -- Meyer, Hermann -- Leduc, James W -- Wohlhueter, Robert M -- G0501257/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2006 Aug 11;313(5788):807-12. Epub 2006 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Preparedness, Detection, and Control of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA. jesposito@cdc.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16873609" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Viral/*genetics ; Disease Outbreaks ; *Evolution, Molecular ; Gene Deletion ; *Genetic Variation ; *Genome, Viral ; Genomics ; Humans ; Molecular Sequence Data ; Open Reading Frames ; Phylogeny ; Proteome/analysis/genetics ; Recombination, Genetic ; Sequence Analysis, DNA ; Smallpox/epidemiology/mortality/*virology ; Variola virus/classification/*genetics/isolation & purification/pathogenicity ; Viral Proteins/chemistry/genetics ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-19
    Description: The allohexaploid bread wheat genome consists of three closely related subgenomes (A, B, and D), but a clear understanding of their phylogenetic history has been lacking. We used genome assemblies of bread wheat and five diploid relatives to analyze genome-wide samples of gene trees, as well as to estimate evolutionary relatedness and divergence times. We show that the A and B genomes diverged from a common ancestor ~7 million years ago and that these genomes gave rise to the D genome through homoploid hybrid speciation 1 to 2 million years later. Our findings imply that the present-day bread wheat genome is a product of multiple rounds of hybrid speciation (homoploid and polyploid) and lay the foundation for a new framework for understanding the wheat genome as a multilevel phylogenetic mosaic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marcussen, Thomas -- Sandve, Simen R -- Heier, Lise -- Spannagl, Manuel -- Pfeifer, Matthias -- International Wheat Genome Sequencing Consortium -- Jakobsen, Kjetill S -- Wulff, Brande B H -- Steuernagel, Burkhard -- Mayer, Klaus F X -- Olsen, Odd-Arne -- New York, N.Y. -- Science. 2014 Jul 18;345(6194):1250092. doi: 10.1126/science.1250092.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, Norwegian University of Life Sciences, 1432 As, Norway. ; Department of Plant Sciences, Norwegian University of Life Sciences, 1432 As, Norway. simen.sandve@nmbu.no. ; Stromsveien 78 B, 0663 Oslo, Norway. ; Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany. ; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway. ; The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25035499" target="_blank"〉PubMed〈/a〉
    Keywords: *Bread ; *Evolution, Molecular ; Genes, Plant ; *Genome, Plant ; *Hybridization, Genetic ; Phylogeny ; Polyploidy ; Triticum/classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...