ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (9)
  • Mice  (2)
  • *Electric Conductivity  (1)
  • American Association for the Advancement of Science (AAAS)  (10)
Collection
Publisher
  • 1
    Publication Date: 2001-10-20
    Description: A reliable method has been developed for making through-bond electrical contacts to molecules. Current-voltage curves are quantized as integer multiples of one fundamental curve, an observation used to identify single-molecule contacts. The resistance of a single octanedithiol molecule was 900 +/- 50 megohms, based on measurements on more than 1000 single molecules. In contrast, nonbonded contacts to octanethiol monolayers were at least four orders of magnitude more resistive, less reproducible, and had a different voltage dependence, demonstrating that the measurement of intrinsic molecular properties requires chemically bonded contacts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cui, X D -- Primak, A -- Zarate, X -- Tomfohr, J -- Sankey, O F -- Moore, A L -- Moore, T A -- Gust, D -- Harris, G -- Lindsay, S M -- New York, N.Y. -- Science. 2001 Oct 19;294(5542):571-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11641492" target="_blank"〉PubMed〈/a〉
    Keywords: Chemistry, Physical ; *Electric Conductivity ; Electrochemistry ; Gold ; Microscopy, Scanning Tunneling ; Physicochemical Phenomena ; Reproducibility of Results ; Sulfhydryl Compounds/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berry, Oliver F -- New York, N.Y. -- Science. 2006 Dec 1;314(5804):1388-90; author reply 1388-90.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17138882" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; DNA, Mitochondrial/*genetics ; *Genetic Variation ; Genetics, Population ; Population Density
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-04-19
    Description: We investigated whether fluoxetine, a widely prescribed medication for treatment of depression, restores neuronal plasticity in the adult visual system of the rat. We found that chronic administration of fluoxetine reinstates ocular dominance plasticity in adulthood and promotes the recovery of visual functions in adult amblyopic animals, as tested electrophysiologically and behaviorally. These effects were accompanied by reduced intracortical inhibition and increased expression of brain-derived neurotrophic factor in the visual cortex. Cortical administration of diazepam prevented the effects induced by fluoxetine, indicating that the reduction of intracortical inhibition promotes visual cortical plasticity in the adult. Our results suggest a potential clinical application for fluoxetine in amblyopia as well as new mechanisms for the therapeutic effects of antidepressants and for the pathophysiology of mood disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maya Vetencourt, Jose Fernando -- Sale, Alessandro -- Viegi, Alessandro -- Baroncelli, Laura -- De Pasquale, Roberto -- O'Leary, Olivia F -- Castren, Eero -- Maffei, Lamberto -- New York, N.Y. -- Science. 2008 Apr 18;320(5874):385-8. doi: 10.1126/science.1150516.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scuola Normale Superiore, Piazza dei Cavalieri, I-56100 Pisa, Italy. jf.maya@in.cnr.it〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18420937" target="_blank"〉PubMed〈/a〉
    Keywords: Amblyopia/drug therapy/physiopathology ; Animals ; Antidepressive Agents, Second-Generation/pharmacology ; Brain-Derived Neurotrophic Factor/metabolism ; Diazepam/pharmacology ; Dominance, Ocular/drug effects ; Evoked Potentials, Visual/drug effects ; Fluoxetine/administration & dosage/*pharmacology ; Long-Term Potentiation ; Long-Term Synaptic Depression ; Neuronal Plasticity/*drug effects ; Rats ; Serotonin/physiology ; Serotonin Uptake Inhibitors/*pharmacology ; Synaptic Transmission/drug effects ; Visual Cortex/*drug effects/physiology ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-06-17
    Description: Protein dynamics are essential for protein function, and yet it has been challenging to access the underlying atomic motions in solution on nanosecond-to-microsecond time scales. We present a structural ensemble of ubiquitin, refined against residual dipolar couplings (RDCs), comprising solution dynamics up to microseconds. The ensemble covers the complete structural heterogeneity observed in 46 ubiquitin crystal structures, most of which are complexes with other proteins. Conformational selection, rather than induced-fit motion, thus suffices to explain the molecular recognition dynamics of ubiquitin. Marked correlations are seen between the flexibility of the ensemble and contacts formed in ubiquitin complexes. A large part of the solution dynamics is concentrated in one concerted mode, which accounts for most of ubiquitin's molecular recognition heterogeneity and ensures a low entropic complex formation cost.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lange, Oliver F -- Lakomek, Nils-Alexander -- Fares, Christophe -- Schroder, Gunnar F -- Walter, Korvin F A -- Becker, Stefan -- Meiler, Jens -- Grubmuller, Helmut -- Griesinger, Christian -- de Groot, Bert L -- New York, N.Y. -- Science. 2008 Jun 13;320(5882):1471-5. doi: 10.1126/science.1157092.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18556554" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Anisotropy ; Chemistry, Physical ; Crystallography, X-Ray ; Entropy ; Kinetics ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Physicochemical Phenomena ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Solutions ; Ubiquitin/*chemistry/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-08-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cryan, John F -- O'Leary, Olivia F -- New York, N.Y. -- Science. 2010 Aug 20;329(5994):913-4. doi: 10.1126/science.1194313.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Pharmacy, Department of Pharmacology and Therapeutics, Alimentary Pharmabiotic Centre, University College Cork, College Road, Cork, Ireland. j.cryan@ucc.ie〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20724626" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antidepressive Agents/*pharmacokinetics ; Drug Synergism ; Excitatory Amino Acid Antagonists/*pharmacology/therapeutic use ; Humans ; Intracellular Signaling Peptides and Proteins/antagonists & inhibitors/metabolism ; Ketamine/*pharmacology/therapeutic use ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Rats ; Sirolimus/pharmacology ; Synaptic Transmission/drug effects ; TOR Serine-Threonine Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1985-02-15
    Description: There is a daily rhythm in the production of the pineal hormone melatonin in all mammalian species. Production is stimulated by darkness and inhibited by light. This provides a signal reflecting the changing environmental lighting cycle. In seasonally breeding mammals that use changes in the photoperiod to time their reproductive cycles, temporal signals to the reproductive system are controlled by the daily rhythm in melatonin production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tamarkin, L -- Baird, C J -- Almeida, O F -- New York, N.Y. -- Science. 1985 Feb 15;227(4688):714-20.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3881822" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Circadian Rhythm ; Estrus ; Female ; Gonads/physiology ; Hypothalamo-Hypophyseal System/physiology ; Light ; Male ; Mammals/physiology ; Melatonin/*physiology ; Pineal Gland/*physiology ; Pregnancy ; *Reproduction ; Seasons ; Sexual Maturation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-07-27
    Description: Helicobacter pylori adherence in the human gastric mucosa involves specific bacterial adhesins and cognate host receptors. Here, we identify sialyl-dimeric-Lewis x glycosphingolipid as a receptor for H. pylori and show that H. pylori infection induced formation of sialyl-Lewis x antigens in gastric epithelium in humans and in a Rhesus monkey. The corresponding sialic acid-binding adhesin (SabA) was isolated with the "retagging" method, and the underlying sabA gene (JHP662/HP0725) was identified. The ability of many H. pylori strains to adhere to sialylated glycoconjugates expressed during chronic inflammation might thus contribute to virulence and the extraordinary chronicity of H. pylori infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570540/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570540/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mahdavi, Jafar -- Sonden, Berit -- Hurtig, Marina -- Olfat, Farzad O -- Forsberg, Lina -- Roche, Niamh -- Angstrom, Jonas -- Larsson, Thomas -- Teneberg, Susann -- Karlsson, Karl-Anders -- Altraja, Siiri -- Wadstrom, Torkel -- Kersulyte, Dangeruta -- Berg, Douglas E -- Dubois, Andre -- Petersson, Christoffer -- Magnusson, Karl-Eric -- Norberg, Thomas -- Lindh, Frank -- Lundskog, Bertil B -- Arnqvist, Anna -- Hammarstrom, Lennart -- Boren, Thomas -- P30 DK52574/DK/NIDDK NIH HHS/ -- R01 AI38166/AI/NIAID NIH HHS/ -- R01 CA082312/CA/NCI NIH HHS/ -- R01 CA082312-08/CA/NCI NIH HHS/ -- R01 DK53727/DK/NIDDK NIH HHS/ -- R03 AI49161/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2002 Jul 26;297(5581):573-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Odontology/Oral Microbiology, Umea University, SE-901 87 Umea, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12142529" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Bacterial/chemistry/genetics/isolation & purification/*metabolism ; Amino Acid Sequence ; Animals ; Antigens, CD15/*metabolism ; *Bacterial Adhesion ; Carbohydrate Sequence ; Carrier Proteins/genetics/metabolism ; Gastric Mucosa/immunology/metabolism/*microbiology ; Gastritis/immunology/metabolism/*microbiology ; Genes, Bacterial ; Glycoconjugates/metabolism ; Helicobacter Infections/immunology/metabolism/*microbiology ; Helicobacter pylori/genetics/isolation & purification/*physiology ; Humans ; Macaca mulatta ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Oligosaccharides/*metabolism ; Sialic Acids/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-01
    Description: The respiratory exchange system of insects must maximize the flux of respiratory gases through the spiracles of the tracheal system while minimizing water loss. This trade-off between gas exchange and water loss becomes crucial when locomotor activity is increased during flight and metabolic needs are greatest. Insects that keep their spiracles mostly closed during flight reduce water loss but limit the flux of oxygen and carbon dioxide into and out of the tracheal system and thus attenuate locomotor performance. Insects that keep their spiracles completely open allow maximum gas exchange but face desiccation stress more quickly. Experiments in which water vapor was used as a tracer gas to track changes in the conductance of the respiratory system indicated that flying fruit flies minimize potential water loss by matching the area of the open spiracles to their gas exchange required for metabolic needs. This behavior maintained approximately constant pressure for carbon dioxide (1.35 kilopascals) and oxygen (19.9 kilopascals) within the tracheal system while reducing respirometric water loss by up to 23% compared with a strategy in which the spiracles are held wide open during flight. The adaptive spiracle-closing behavior in fruit flies has general implications for the ecology of flying insects because it shows how these animals may cope with environmental challenges during high locomotor performance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lehmann, F O -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1926-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Theodor-Boveri-Institute, Department of Behavioral Physiology and Sociobiology, University of Wurzburg, Am Hubland, 97074 Wurzburg, Germany. lehmann@biozentrum.uni-wuerzburg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729318" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbon Dioxide/metabolism ; Dehydration/*metabolism ; Desiccation ; Diffusion ; Drosophila melanogaster/*metabolism ; Electric Conductivity ; Energy Metabolism ; Flight, Animal/*physiology ; Oxygen/metabolism ; *Oxygen Consumption ; Trachea/metabolism ; Water/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-06-18
    Description: The enhanced aerodynamic performance of insects results from an interaction of three distinct yet interactive mechanisms: delayed stall, rotational circulation, and wake capture. Delayed stall functions during the translational portions of the stroke, when the wings sweep through the air with a large angle of attack. In contrast, rotational circulation and wake capture generate aerodynamic forces during stroke reversals, when the wings rapidly rotate and change direction. In addition to contributing to the lift required to keep an insect aloft, these two rotational mechanisms provide a potent means by which the animal can modulate the direction and magnitude of flight forces during steering maneuvers. A comprehensive theory incorporating both translational and rotational mechanisms may explain the diverse patterns of wing motion displayed by different species of insects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dickinson, M H -- Lehmann, F O -- Sane, S P -- New York, N.Y. -- Science. 1999 Jun 18;284(5422):1954-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. flymannd@socrates.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10373107" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomechanical Phenomena ; Drosophila melanogaster/*physiology ; Flight, Animal/*physiology ; Kinetics ; Models, Biological ; Movement ; Robotics ; Rotation ; Wings, Animal/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-02-20
    Description: Antibiotics with new mechanisms of action are urgently required to combat the growing health threat posed by resistant pathogenic microorganisms. We synthesized a family of peptidomimetic antibiotics based on the antimicrobial peptide protegrin I. Several rounds of optimization gave a lead compound that was active in the nanomolar range against Gram-negative Pseudomonas spp., but was largely inactive against other Gram-negative and Gram-positive bacteria. Biochemical and genetic studies showed that the peptidomimetics had a non-membrane-lytic mechanism of action and identified a homolog of the beta-barrel protein LptD (Imp/OstA), which functions in outer-membrane biogenesis, as a cellular target. The peptidomimetic showed potent antimicrobial activity in a mouse septicemia infection model. Drug-resistant strains of Pseudomonas are a serious health problem, so this family of antibiotics may have important therapeutic applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Srinivas, Nityakalyani -- Jetter, Peter -- Ueberbacher, Bernhard J -- Werneburg, Martina -- Zerbe, Katja -- Steinmann, Jessica -- Van der Meijden, Benjamin -- Bernardini, Francesca -- Lederer, Alexander -- Dias, Ricardo L A -- Misson, Pauline E -- Henze, Heiko -- Zumbrunn, Jurg -- Gombert, Frank O -- Obrecht, Daniel -- Hunziker, Peter -- Schauer, Stefan -- Ziegler, Urs -- Kach, Andres -- Eberl, Leo -- Riedel, Kathrin -- DeMarco, Steven J -- Robinson, John A -- New York, N.Y. -- Science. 2010 Feb 19;327(5968):1010-3. doi: 10.1126/science.1182749.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemistry Department, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20167788" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/chemical synthesis/metabolism/*pharmacology ; Antimicrobial Cationic Peptides/chemistry ; Bacterial Outer Membrane Proteins/chemistry/genetics/*metabolism ; Cell Membrane/*metabolism ; Drug Design ; Drug Resistance, Bacterial/genetics ; Genes, Bacterial ; Lipopolysaccharides/metabolism ; Mice ; Microbial Sensitivity Tests ; Molecular Mimicry ; Mutation ; Peptide Library ; Peptides/chemical synthesis/chemistry/metabolism/*pharmacology ; Protein Structure, Tertiary ; Pseudomonas Infections/drug therapy/microbiology ; Pseudomonas aeruginosa/*drug effects/growth & ; development/*metabolism/ultrastructure ; Sepsis/drug therapy/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...