ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1991-03-08
    Description: Epidermal growth factor and platelet-derived growth factor can stimulate the production of the second messenger inositol trisphosphate in responsive cells, but the biochemical pathway for these signaling events has been uncertain because the reactions have not been reconstituted with purified molecules in vitro. A reconstitution is described that requires not only the growth factor, its receptor with tyrosine kinase activity, and the soluble phospholipase C-gamma 1, but also the small soluble actin-binding protein profilin. Profilin binds to the substrate phosphatidylinositol 4,5-bisphosphate and inhibits its hydrolysis by unphosphorylated phospholipase C-gamma 1. Phosphorylation of phospholipase C-gamma 1 by the epidermal growth factor receptor tyrosine kinase overcomes the inhibitory effect of profilin and results in an effective activation of phospholipase C-gamma 1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldschmidt-Clermont, P J -- Kim, J W -- Machesky, L M -- Rhee, S G -- Pollard, T D -- GM-26338/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Mar 8;251(4998):1231-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1848725" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Contractile Proteins/metabolism ; Epidermal Growth Factor/*metabolism ; Inositol Phosphates/metabolism ; Isoenzymes/*metabolism ; Kinetics ; Microfilament Proteins/*metabolism ; Phosphatidylinositol 4,5-Diphosphate ; Phosphatidylinositols/metabolism ; Phosphorylation ; Profilins ; Protein-Tyrosine Kinases/*metabolism ; Receptor, Epidermal Growth Factor/*metabolism ; Signal Transduction ; Type C Phospholipases/*metabolism ; Tyrosine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1990-03-30
    Description: Profilin is generally thought to regulate actin polymerization, but the observation that acidic phospholipids dissociate the complex of profilin and actin raised the possibility that profilin might also regulate lipid metabolism. Profilin isolated from platelets binds with high affinity to small clusters of phosphatidylinositol 4,5-bisphosphate (PIP2) molecules in micelles and also in bilayers with other phospholipids. The molar ratio of the complex of profilin with PIP2 is 1:7 in micelles of pure PIP2 and 1:5 in bilayers composed largely of other phospholipids. Profilin competes efficiently with platelet cytosolic phosphoinositide-specific phospholipase C for interaction with the PIP2 substrate and thereby inhibits PIP2 hydrolysis by this enzyme. The cellular concentrations and binding characteristics of these molecules are consistent with profilin being a negative regulator of the phosphoinositide signaling pathway in addition to its established function as an inhibitor of actin polymerization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldschmidt-Clermont, P J -- Machesky, L M -- Baldassare, J J -- Pollard, T D -- GM 26338/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 30;247(4950):1575-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2157283" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Chromatography, Gel ; *Contractile Proteins ; Humans ; Hydrolysis ; Micelles ; Microfilament Proteins/*metabolism ; Phosphatidylinositol 4,5-Diphosphate ; Phosphatidylinositols/*metabolism ; Polymers ; Profilins ; Type C Phospholipases/*antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-03-14
    Description: NIH 3T3 fibroblasts stably transformed with a constitutively active isoform of p21(Ras), H-RasV12 (v-H-Ras or EJ-Ras), produced large amounts of the reactive oxygen species superoxide (.O2-). .O2- production was suppressed by the expression of dominant negative isoforms of Ras or Rac1, as well as by treatment with a farnesyltransferase inhibitor or with diphenylene iodonium, a flavoprotein inhibitor. The mitogenic activity of cells expressing H-RasV12 was inhibited by treatment with the chemical antioxidant N-acetyl-L-cysteine. Mitogen-activated protein kinase (MAPK) activity was decreased and c-Jun N-terminal kinase (JNK) was not activated in H-RasV12-transformed cells. Thus, H-RasV12-induced transformation can lead to the production of .O2- through one or more pathways involving a flavoprotein and Rac1. The implication of a reactive oxygen species, probably .O2-, as a mediator of Ras-induced cell cycle progression independent of MAPK and JNK suggests a possible mechanism for the effects of antioxidants against Ras-induced cellular transformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Irani, K -- Xia, Y -- Zweier, J L -- Sollott, S J -- Der, C J -- Fearon, E R -- Sundaresan, M -- Finkel, T -- Goldschmidt-Clermont, P J -- HL52315/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 Mar 14;275(5306):1649-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9054359" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Acetylcysteine/pharmacology ; Animals ; Antioxidants/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; *Cell Cycle ; Cell Line, Transformed ; *Cell Transformation, Neoplastic ; DNA/biosynthesis ; Electron Spin Resonance Spectroscopy ; GTP-Binding Proteins/metabolism ; *Genes, ras ; JNK Mitogen-Activated Protein Kinases ; Mice ; *Mitogen-Activated Protein Kinases ; Oxidation-Reduction ; Proto-Oncogene Proteins p21(ras)/genetics/*metabolism ; Reactive Oxygen Species/*metabolism ; Signal Transduction ; Superoxides/*metabolism ; Transfection ; rac GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-11-28
    Description: Smooth muscle cell (SMC) proliferation is a hallmark of vascular injury and disease. Global hypomethylation occurs during SMC proliferation in culture and in vivo during neointimal formation. Regardless of the programmed or stochastic nature of hypomethylation, identifying these changes is important in understanding vascular disease, as maintenance of a cells' epigenetic profile is essential for maintaining cellular phenotype. Global hypomethylation of proliferating aortic SMCs and concomitant decrease of DNMT1 expression were identified in culture during passage. An epigenome screen identified regions of the genome that were hypomethylated during proliferation and a region containing Collagen, type XV, alpha 1 ( COL15A1 ) was selected by ‘genomic convergence’ for characterization. COL15A1 transcript and protein levels increased with passage-dependent decreases in DNA methylation and the transcript was sensitive to treatment with 5-Aza-2'-deoxycytidine, suggesting DNA methylation-mediated gene expression. Phenotypically, knockdown of COL15A1 increased SMC migration and decreased proliferation and Col15a1 expression was induced in an atherosclerotic lesion and localized to the atherosclerotic cap. A sequence variant in COL15A1 that is significantly associated with atherosclerosis (rs4142986, P = 0.017, OR = 1.434) was methylated and methylation of the risk allele correlated with decreased gene expression and increased atherosclerosis in human aorta. In summary, hypomethylation of COL15A1 occurs during SMC proliferation and the consequent increased gene expression may impact SMC phenotype and atherosclerosis formation. Hypomethylated genes, such as COL15A1 , provide evidence for concomitant epigenetic regulation and genetic susceptibility, and define a class of causal targets that sit at the intersection of genetic and epigenetic predisposition in the etiology of complex disease.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...