ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (2)
  • Oxford University Press  (1)
  • 1
    Publication Date: 2014-08-07
    Description: Following our previous spectroscopic observations of z 〉 7 galaxies with Gemini/Gemini Near Infra-Red Spectrograph (GNIRS) and Very Large Telescope (VLT)/XSHOOTER, which targeted a total of eight objects, we present here our results from a deeper and larger VLT/FOcal Reducer and Spectrograph (FORS2) spectroscopic sample of Wide Field Camera 3 selected z 〉 7 candidate galaxies. With our FORS2 setup we cover the 737–1070 nm wavelength range, enabling a search for Lyman α in the redshift range spanning 5.06–7.80. We target 22 z -band dropouts and find no evidence of Lyman α emission, with the exception of a tentative detection (〈5, which is our adopted criterion for a secure detection) for one object. The upper limits on Lyman α flux and the broad-band magnitudes are used to constrain the rest-frame equivalent widths for this line emission. We analyse our FORS2 observations in combination with our previous GNIRS and XSHOOTER observations, and suggest that a simple model where the fraction of high rest-frame equivalent width emitters follows the trend seen at z = 3-6.5 is inconsistent with our non-detections at z ~ 7.8 at the 96 per cent confidence level. This may indicate that a significant neutral H i fraction in the intergalactic medium suppresses Lyman α, with an estimated neutral fraction $\chi _{\rm H\,\small {I}}\sim 0.5$ , in agreement with other estimates.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈p〉Surface molecules can transition from physisorption through weak van der Waals forces to a strongly bound chemisorption state by overcoming an energy barrier. We show that a carbon monoxide (CO) molecule adsorbed to the tip of an atomic force microscope enables a controlled observation of bond formation, including its potential transition from physisorption to chemisorption. During imaging of copper (Cu) and iron (Fe) adatoms on a Cu(111) surface, the CO was not chemically inert but transited through a physisorbed local energy minimum into a chemisorbed global minimum, and an energy barrier was seen for the Fe adatom. Density functional theory reveals that the transition occurs through a hybridization of the electronic states of the CO molecule mainly with s-, p〈i〉〈sub〉z〈/sub〉〈/i〉-, and d〈i〉〈sub〉z〈/sub〉〈/i〉〈sup〉2〈/sup〉-type states of the Fe and Cu adatoms, leading to chemical bonding.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈p〉Surface molecules can transition from physisorption through weak van-der-Waals forces to a strongly bound chemisorption state by overcoming an energy barrier. We show that a CO molecule adsorbed to the tip of an atomic force microscope enables a controlled observation of bond formation, including its potential transition from physisorption to chemisorption. During imaging of Cu and Fe adatoms on a Cu(111) surface, the CO was not chemically inert but transited through a physisorbed local energy minimum into a chemisorbed global minimum, and an energy barrier was seen for the Fe adatom. Density functional theory reveals that the transition occurs through a hybridization of the electronic states of the CO molecule mainly with 〈i〉s〈/i〉-, 〈i〉p〈sub〉z〈/sub〉〈/i〉- and 〈i〉d〈sub〉z〈/sub〉〈/i〉〈sup〉2〈/sup〉-type states of the Fe and Cu adatoms, leading to chemical bonding.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...