ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (2)
  • American Association for the Advancement of Science (AAAS)  (2)
  • EDP Sciences
  • 1
    Publication Date: 2009-04-11
    Description: Heterozygous mutations in the gene encoding isocitrate dehydrogenase-1 (IDH1) occur in certain human brain tumors, but their mechanistic role in tumor development is unknown. We have shown that tumor-derived IDH1 mutations impair the enzyme's affinity for its substrate and dominantly inhibit wild-type IDH1 activity through the formation of catalytically inactive heterodimers. Forced expression of mutant IDH1 in cultured cells reduces formation of the enzyme product, alpha-ketoglutarate (alpha-KG), and increases the levels of hypoxia-inducible factor subunit HIF-1alpha, a transcription factor that facilitates tumor growth when oxygen is low and whose stability is regulated by alpha-KG. The rise in HIF-1alpha levels was reversible by an alpha-KG derivative. HIF-1alpha levels were higher in human gliomas harboring an IDH1 mutation than in tumors without a mutation. Thus, IDH1 appears to function as a tumor suppressor that, when mutationally inactivated, contributes to tumorigenesis in part through induction of the HIF-1 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3251015/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3251015/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Shimin -- Lin, Yan -- Xu, Wei -- Jiang, Wenqing -- Zha, Zhengyu -- Wang, Pu -- Yu, Wei -- Li, Zhiqiang -- Gong, Lingling -- Peng, Yingjie -- Ding, Jianping -- Lei, Qunying -- Guan, Kun-Liang -- Xiong, Yue -- R01 CA068377/CA/NCI NIH HHS/ -- R01 CA068377-14/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 10;324(5924):261-5. doi: 10.1126/science.1170944.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cell Biology Laboratory, Institute of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19359588" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Astrocytoma/genetics/metabolism ; Biocatalysis ; Brain Neoplasms/*genetics/metabolism ; Cell Line ; Child ; Female ; Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor ; Glioblastoma/genetics/metabolism ; Glioma/*genetics/metabolism ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & ; inhibitors/genetics/*metabolism ; Isocitrate Dehydrogenase/chemistry/*genetics/*metabolism ; Ketoglutaric Acids/metabolism ; Male ; Middle Aged ; Mutant Proteins/chemistry/metabolism ; Oligodendroglioma/genetics/metabolism ; Oxalates/pharmacology ; Protein Multimerization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-02-20
    Description: Protein lysine acetylation has emerged as a key posttranslational modification in cellular regulation, in particular through the modification of histones and nuclear transcription regulators. We show that lysine acetylation is a prevalent modification in enzymes that catalyze intermediate metabolism. Virtually every enzyme in glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, the urea cycle, fatty acid metabolism, and glycogen metabolism was found to be acetylated in human liver tissue. The concentration of metabolic fuels, such as glucose, amino acids, and fatty acids, influenced the acetylation status of metabolic enzymes. Acetylation activated enoyl-coenzyme A hydratase/3-hydroxyacyl-coenzyme A dehydrogenase in fatty acid oxidation and malate dehydrogenase in the TCA cycle, inhibited argininosuccinate lyase in the urea cycle, and destabilized phosphoenolpyruvate carboxykinase in gluconeogenesis. Our study reveals that acetylation plays a major role in metabolic regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232675/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232675/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Shimin -- Xu, Wei -- Jiang, Wenqing -- Yu, Wei -- Lin, Yan -- Zhang, Tengfei -- Yao, Jun -- Zhou, Li -- Zeng, Yaxue -- Li, Hong -- Li, Yixue -- Shi, Jiong -- An, Wenlin -- Hancock, Susan M -- He, Fuchu -- Qin, Lunxiu -- Chin, Jason -- Yang, Pengyuan -- Chen, Xian -- Lei, Qunying -- Xiong, Yue -- Guan, Kun-Liang -- MC_U105181009/Medical Research Council/United Kingdom -- MC_UP_A024_1008/Medical Research Council/United Kingdom -- R01 CA065572/CA/NCI NIH HHS/ -- R01 CA065572-13/CA/NCI NIH HHS/ -- R01 CA065572-14/CA/NCI NIH HHS/ -- R01 CA065572-15/CA/NCI NIH HHS/ -- R01CA108941/CA/NCI NIH HHS/ -- R01CA65572/CA/NCI NIH HHS/ -- R01GM51586/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 19;327(5968):1000-4. doi: 10.1126/science.1179689.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Fudan University, Shanghai 20032, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20167786" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Hydroxyacyl CoA Dehydrogenases/metabolism ; Acetylation ; Argininosuccinate Lyase/genetics/metabolism ; Cell Line ; Citric Acid Cycle ; Enoyl-CoA Hydratase/metabolism ; Enzymes/*metabolism ; Fatty Acids/metabolism ; Gluconeogenesis ; Glycogen/metabolism ; Glycolysis ; Hepatocytes/enzymology/*metabolism ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Isomerases/metabolism ; Liver/enzymology/*metabolism ; Lysine/*metabolism ; Malate Dehydrogenase/metabolism ; Multienzyme Complexes/metabolism ; Oxidation-Reduction ; Peroxisomal Bifunctional Enzyme ; Phosphoenolpyruvate Carboxykinase (GTP)/metabolism ; *Protein Processing, Post-Translational ; Proteins/*metabolism ; Proteome ; Urea/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...