ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-11-20
    Description: "Natural measures of quantity, such as fathoms, cubits, inches, taken from the proportion of the human body, were once in use with every nation," taught Adam Smith in his lecture "Money as the measure of value and medium of exchange," delivered in 1763. "But by a little observation," he continued, "they found that one man's arm was longer or shorter than another's, and that one was not to be compared with the other; and therefore wise men who attended to these things would endeavour to fix upon some more accurate measure, that equal quantities might be of equal values. Their method became absolutely necessary when people came to deal in many commodities, and in great quantities of them." Smith's comments and the rationale underpinning them became increasingly urgent toward the end of the eighteenth century.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ashworth, William J -- New York, N.Y. -- Science. 2004 Nov 19;306(5700):1314-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of History, University of Liverpool, Liverpool, L69 3BX, UK. W.J.Ashworth@liverpool.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15550658" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Diffusion modelling is applied to layered garnet–pyroxene–quartz coronas, formed by a pressure-induced reaction between plagioclase and primary pyroxene in a metabasic granulite. The reconstructed reaction involves some change in composition of reactant minerals. The distribution of minerals between layers is satisfactorily explained by diffusion-controlled reaction with local equilibrium, in which the diffusion coefficient for Al was smaller than those for Fe, Mg and Ca by a factor of approximately four. Diffusion of Mg towards plagioclase implies a chemical-potential gradient for MgO component in a direction opposite to the changing Mg content of garnet; this is explained by the influence of Al2O3 on the chemical potential of the pyrope end-member. Grain-boundary diffusion is suggested to have operated, possibly with composition gradients different from those in the bulk minerals. Chemical-potential differences across the corona are estimated from the variation in garnet composition, enabling affinity (the free energy change driving the reaction) to be estimated as 6.9±1.8 kJ per 24-oxygen mole of garnet produced. This implies that the pressure for equilibrium among the minerals was overstepped by 1.4±0.4 kbar. The probable P–T conditions of reaction were in the range 650–790 °C, 8–10 kbar. Assuming a timescale of reaction between 106 and 108 years, estimated diffusion coefficients for Fe, Mg and Ca are in the range 9×10−23 to 5×10−20 m2 s−1. These are consistent with experimental values in the literature for solid-state diffusion, including grain-boundary diffusion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...