ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (9)
  • Navier-Stokes equations  (9)
  • Wiley-Blackwell  (9)
  • American Association for the Advancement of Science (AAAS)
  • Blackwell Publishing Ltd
  • Institute of Physics
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (9)
  • Electrical Engineering, Measurement and Control Technology
Collection
  • Articles  (9)
Publisher
  • Wiley-Blackwell  (9)
  • American Association for the Advancement of Science (AAAS)
  • Blackwell Publishing Ltd
  • Institute of Physics
Years
Topic
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (9)
  • Electrical Engineering, Measurement and Control Technology
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 19 (1994), S. 667-685 
    ISSN: 0271-2091
    Keywords: Incompressible flows ; Navier-Stokes equations ; Riemann solver ; Artifical compressibility ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A new characteristic-based method for the solution of the 2D laminar incompressible Navier-Stokes equations is presented. For coupling the continuity and momentum equations, the artificial compressibility formulation is employed. The primitives variables (pressure and velocity components) are defined as functions of their values on the characteristics. The primitives variables on the characteristics are calculated by an upwind diffencing scheme based on the sign of the local eigenvalue of the Jacobian matrix of the convective fluxes. The upwind scheme uses interpolation formulae of third-order accuracy. The time discretization is obtained by the explicit Runge-Kutta method. Validation of the characteristic-based method is performed on two different cases: the flow in a simple cascade and the flow over a backwardfacing step.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 22 (1996), S. 353-373 
    ISSN: 0271-2091
    Keywords: Navier-Stokes equations ; finite differences ; unsymmetric linear systems ; Krylov subspace methods ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In many popular solution algorithms for the incompressible Navier-Stoke equations the coupling between the momentum equations is neglected when the linearized momentum equations are solved to update the velocities. This is known to lead to poor convergence in highly swirling flows where coupling between the radial and tangential momentum equations is strong. Here we propose a coupled solution algorithm in which the linearized momentum and continuity equations are solved simultaneously. Comparisons between the new method and the well-known SIMPLEC method are presented.
    Additional Material: 23 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 21 (1995), S. 489-497 
    ISSN: 0271-2091
    Keywords: Navier-Stokes equations ; vorticity-velocity formulation ; finite difference methods ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A method of solution for the two-dimensional Navier-Stokes equations for incompressible flow past a cylinder is given in which the euquation of continuity is solved by a step-by-step integration procedure at each stage of an interative process. Thus the formulation involves the solution of one first-order and one second-order equation for the velocity components, together with the vorticity transport equation. the equations are solved numerically by h4-accurate methods in the case of steady flow past a circular cylinder in the Reynolds number range 10-100. Results are in satisfactory agreement with recent h4-accurate calculations. An improved approximation to the boundary conditions at large distance is also considered.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 22 (1996), S. 85-101 
    ISSN: 0271-2091
    Keywords: Navier-Stokes equations ; time-dependent, separated flow ; unstructured, adaptive, dynamic grids ; local time-stepping scheme ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: An adaptive finite volume method for the simulation of time-dependent, viscous flow is presented. The Navier-Stokes equations are discretized by central schemes on unstructured grids and solved by an explicit Runge-Kutta method. The essential topics of the present study are a new concept for a local Runge-Kutta time-stepping scheme, called multisequence Runge-Kutta, which reduces the severe stability restriction in unsteady problems, a common grid generation and adaptation procedure and the application of dynamic grids for capturing moving flow structures. Results are presented for laminar, separated flow around an aerofoil with a flap.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 8 (1988), S. 1241-1268 
    ISSN: 0271-2091
    Keywords: Incompressible flow ; Navier-Stokes equations ; Finite differences ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper discusses incompressible Navier-Stokes solution methods with an emphasis on the pseudocompressibility method. A steady-state flow solver based on the pseudocompressibility approach is then described. This flow solver code has been used to analyse the internal flow in the Space Shuttle main engine hot-gas manifold. Salient features associated with this three-dimensional realistic flow simulation are discussed. Numerical solutions relevant to the current engine analysis and the redesign effort are discussed along with experimental results. This example demonstrates the potential of computational fluid dynamics as a design tool for aerospace applications.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0271-2091
    Keywords: Navier-Stokes equations ; Finite element method ; Distensible tubes ; Wave propagation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The fluid flow in distensible tubes is analysed by a finite element method based on an uncoupled solution of the equations of wall motion and fluid flow. Special attention is paid to the choice of proper boundary conditions. Computations were made for sinusoidal flow in a distensible uniform tube with the Womersley parameter α = 5, and a ratio between tube radius and wavelenth from 0·0001 to 0·5. The agreement between the numerical results and Womersley's analytic solution depends on the speed ratio between fluid and wave velocity, and is fair for speed ratios up to 0·05. The analysis of the flow field in a distensible tube with a local inhomogeneity revealed a marked influence of wave phenomena and wall motion on the velocity profiles.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 19 (1994), S. 369-375 
    ISSN: 0271-2091
    Keywords: Navier-Stokes equations ; Incompressible ; Three-dimensional ; Exact solution ; Benchmarking ; Penalty formulation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Unsteady analytical solutions to the incompressible Navier-Stokes equations are presented. They are fully three-dimensional vector solutions involving all three Cartesian velocity components, each of which depends non-trivially on all three co-ordinate directions. Although unlikely to be physically realized, they are well suited for benchmarking, testing and validation of three-dimensional incompressible Navier-Stokes solvers. The use of such a solution for benchmarking purposes is described.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 8 (1988), S. 1229-1240 
    ISSN: 0271-2091
    Keywords: Streamfunction-vorticity approximations ; Velocity-vorticity approximations ; Finite element methods ; Navier-Stokes equations ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: We consider finite element methods for vorticity formulations of viscous incompressible flows. In two-dimensional settings the familiar streamfunction-vorticity formulation is examined. We focus on its accuracy, especially when using low-order elements, and on its use with a variety of boundary conditions and in multiply connected domains. In three dimensions the velocity-vorticity formulation is shown to be preferable, and a promising algorithm using this formulation is presented. We close by considering the recovery of the pressure field once the streamfunction or velocity fields are known. In particular we describe and analyse an algorithm for recovering the pressure which is based on well known methods for the primitive variable formulation and which requires no boundary conditions on the pressure at solid walls.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 22 (1996), S. 673-688 
    ISSN: 0271-2091
    Keywords: Navier-Stokes equations ; projection methods ; operator splitting ; spectral element methods ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: An approximate projection scheme based on the pressure correction method is proposed to solve the Navier-Stokes equations for incompressible flow. The algorithm is applied to the continuous equations; however, there are no problems concerning the choice of boundary conditions of the pressure step. The resulting velocity and pressure are consistent with the original system. For the spatial discretization a high-order spectral element method is chosen. The high-order accuracy allows the use of a diagonal mass matrix, resulting in a very efficient algorithm. The properties of the scheme are extensively tested by means of an analytical test example. The scheme is further validated by simulating the laminar flow over a backward-facing step.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...