ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (8)
  • Finite element method  (8)
  • Wiley-Blackwell  (8)
  • American Association for the Advancement of Science (AAAS)
  • Blackwell Publishing Ltd
  • Institute of Physics
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (8)
  • Electrical Engineering, Measurement and Control Technology
Collection
  • Articles  (8)
Publisher
  • Wiley-Blackwell  (8)
  • American Association for the Advancement of Science (AAAS)
  • Blackwell Publishing Ltd
  • Institute of Physics
Years
Topic
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (8)
  • Electrical Engineering, Measurement and Control Technology
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 8 (1988), S. 519-536 
    ISSN: 0271-2091
    Keywords: Fluid forces ; Viscous incompressible flow ; Fluid-structure interaction ; Finite element method ; Steady streaming ; Added mass ; Added damping ; Added force ; Oscillation flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper describes a method for determining the fluid forces on oscillating bodies in viscous fluid when the corresponding flow problem has been solved using the finite element method. These forces are characterized by the concept of added mass, added damping and added force. Numerical results are obtained for several example body shapes. Comparison is made with exact analytical results and other finite element results for the limiting cases of Stoke's flow and inviscid flow, and good agreement is obtained. The results for finite values of the body amplitude parameter β show the appearance of added force from the steady streaming component of the flow for asymmetric bodies. Results are also obtained for the associated flow where the fluid remote from a fixed body is oscillating.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 10 (1990), S. 713-721 
    ISSN: 0271-2091
    Keywords: Boundary node correction ; Pressure smoothing ; Finite element method ; Superconvergence ; Posterior error analysis ; Multiple mesh extrapolation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Convergence improvement and superconvergence behaviour, obtained by the simple boundary node correction (BNC) procedure for certain stress-like variables of smoothed FEM solutions, are reported in this paper. The effectiveness of BNC is shown through three examples of steady flow problems, and a posterior error analysis based on the multiple-mesh extrapolation technique has been used for estimating the convergence rates.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 14 (1992), S. 681-705 
    ISSN: 0271-2091
    Keywords: Unsteady Navier-Stokes equations ; Finite element method ; Viscous flow ; Free boundary flow ; Multiphase flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A finite element method for the transient incompressible Navier-Stokes equations with the ability to handle multiple free boundaries is presented. Problems of liquid-liquid type are treated by solving two coupled Navier-Stokes problems for two separate phases. The possibility to solve problems of liquid-gas, liquid-liquid-gas or liquid-liquid-liquid type is demonstrated too. Surface tension effects are included at deformable interfaces.The method is of Lagrangian type with mesh redefinition. A predictor-corrector scheme is used to compute the position of the deformable interface with automatic control of its accuracy and smoothness. The method is provided with an automatic choice of the time integration step and an optional spline filtration of the truncation error at the free surface. In order to show the accuracy of the method, tests and comparisons are presented. Numerical examples include motion of bubbles and multiple drops.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 151-165 
    ISSN: 0271-2091
    Keywords: Numerical analysis ; Fluid flow ; Rotating circular duct ; Finite cell method ; Finite element method ; Swirl ; Inlet boundary conditions ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical analysis of the flow pattern in the inlet region of a circular pipe rotating steadily about an axis parallel to its own is presented. Both finite cell and finite element methods are used to analyse the problem and they give qualitatively similar results which show that a swirling fluid motion is induced in the pipe inlet region. The analyses show that the direction of swirl is opposite to that of the pipe rotation when viewed along the flow axis and that its magnitude depends on the speed of pipe rotation and throughflow Reynolds number. Neither numerical analysis predicts the marked upturn in friction factor (or pressure drop) which has been observed experimentally. However, a dependence on the pipe inlet boundary conditions is demonstrated.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 14 (1992), S. 443-457 
    ISSN: 0271-2091
    Keywords: Turbulent oscillating flows ; Finite element method ; The method of averaging ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The time-dependent turbulent Navier-Stokes equations are solved numerically by a finite element method with an algebraic eddy viscosity model (Baldwin-Lomax formulation) for oscillating turbulent channel flows. The method of averaging is used to analyse the resulting periodic motion of the fluid. Numerical results are obtained for various Strouhal numbers and relative amplitudes. A comparison is made between the numerical and published experimental results. It appears that for low relative amplitudes in a certain range of frequencies the agreement is satisfactory.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0271-2091
    Keywords: Navier-Stokes equations ; Finite element method ; Distensible tubes ; Wave propagation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The fluid flow in distensible tubes is analysed by a finite element method based on an uncoupled solution of the equations of wall motion and fluid flow. Special attention is paid to the choice of proper boundary conditions. Computations were made for sinusoidal flow in a distensible uniform tube with the Womersley parameter α = 5, and a ratio between tube radius and wavelenth from 0·0001 to 0·5. The agreement between the numerical results and Womersley's analytic solution depends on the speed ratio between fluid and wave velocity, and is fair for speed ratios up to 0·05. The analysis of the flow field in a distensible tube with a local inhomogeneity revealed a marked influence of wave phenomena and wall motion on the velocity profiles.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 18 (1994), S. 647-668 
    ISSN: 0271-2091
    Keywords: Euler equations ; Finite element method ; Implicit scheme ; Unsteady flow ; Transonic flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: An implicit finite element method is presented for the solution of steady and unsteady inviscid compressible flows on triangular meshes under transonic conditions. The method involves a first-order time-stepping scheme with a finite element discretization that reduces to central differencing on a rectangular mesh. On a solid wall the slip condition is prescribed and the pressure is obtained from an approximation of the normal momentum equation. With this solver no artificial viscosity is added to ensure the success of the calculation. Numerical examples are given for steady and unsteady cases.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 275-287 
    ISSN: 0271-2091
    Keywords: Curved pipe flow ; Entrance flow ; Finite element method ; Penalty function method ; Experimental validation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A standard Galerkin finite element penalty function method is used to approximate the solution of the three-dimensional Navier-Stokes equations for steady incompressible Newtonian entrance flow in a 90° curved tube (curvature ratio δ = 1/6) for a triple of Dean numbers (κ = 41, 122 and 204). The computational results for the intermediate Dean number (κ = 122) are compared with the results of laser-Doppler velocity measurements in an equivalent experimental model. For both the axial and secondary velocity components, fair agreement between the computational and experimental results is found.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...