ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (2)
  • BIOMED CENTRAL LTD  (1)
  • Cell Press  (1)
  • 1
    Publication Date: 2016-07-01
    Print ISSN: 0966-842X
    Electronic ISSN: 1878-4380
    Topics: Biology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 301 (5638). p. 1343.
    Publication Date: 2017-12-14
    Description: In vertebrates, genes of the major histocompatibility complex (MHC), with their pronounced polymorphism, potentially represent outstanding examples for the selective advantages of genetic diversity (1). Theoretical models predicted that, within an individual, MHC alleles can be subjected to two opposing selective forces, resulting in an optimal number of genes at intermediate individual MHC diversity (2, 3). Diversifying selection increases heterozygosity and enables wider recognition of pathogens (4). This process is opposed by the need to delete T cells that react with self peptide–MHC combinations (5) from the repertoire, which has been proposed as a possible mechanism constraining expansion of MHC genes. Because too high MHC diversity might delimit T cell diversity, it might also impose limitations on the efficiency of pathogen recognition. However, empirical evidence demonstrating fitness benefits in terms of parasite resistance caused by this type of optimal MHC diversity has been lacking. Therefore, we tested whether three-spined sticklebacks (Gasterosteus aculeatus L.) carrying an intermediate level of individual MHC diversity also displayed the strongest level of resistance against parasite infection. Sticklebacks are particularly suited to test MHC optimality, because MHC class II genotypes can differ markedly in the number of MHC class IIB alleles (6). We caught fish from an outbred population and used these to breed six sibships of immunologically naïve fish (i.e., they had no previous contact to parasites). Immunogenetic diversity ranged from three to nine MHC class IIB alleles found in reverse-transcribed messenger RNA (mRNA) [see (6) for details on genotyping]. The MHC genotypes within these sibships segregated above and below the hypothesized optimal number of ∼5 MHC class IIB alleles, which had previously been estimated in an epidemiological field survey (7). In individual infection treatments, fish from all sibships were simultaneously exposed to three of the most abundant parasite species identified in the field (Fig. 1A) (8). After two rounds of infection, separated by an interval of 8 weeks, we found a significant minimal mean infection rate at an intermediate number of individual MHC class IIB variants [i.e., 5.82 expressed alleles (Fig. 1B)]. This result was also confirmed when sibships were considered separately [i.e., 4.96 alleles (Fig. 1C)] (9). The strong pattern only appeared when infection with all three parasites was accounted for simultaneously. This may not be surprising, because single alleles are expected to correlate with single diseases and multiple alleles can contribute to resistance against several infectious agents (2).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 303 (5660). 957b-957.
    Publication Date: 2013-02-04
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    BIOMED CENTRAL LTD
    In:  EPIC3BMC Evolutionary Biology, BIOMED CENTRAL LTD, 14, pp. 164, ISSN: 1471-2148
    Publication Date: 2014-08-26
    Description: Background: Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. Results: We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. Conclusion: To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...