ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (116)
  • Copernicus  (75)
  • American Association for the Advancement of Science (AAAS)  (41)
  • American Physical Society (APS)
  • Geologie und Paläontologie  (85)
  • Allgemeine Naturwissenschaft  (41)
Sammlung
  • Artikel  (116)
Erscheinungszeitraum
Zeitschrift
Thema
  • 1
    Publikationsdatum: 2018
    Beschreibung: 〈p〉The edges of layered materials have unique properties that substantially differ from the body regions. In this work, we perform a systematic Raman study of the edges of various layered materials (MoS〈sub〉2〈/sub〉, WS〈sub〉2〈/sub〉, WSe〈sub〉2〈/sub〉, PtS〈sub〉2〈/sub〉, and black phosphorus). The Raman spectra of the edges feature newly observed forbidden Raman modes, which are originally undetectable from the body region. By selecting the edge type and the polarization directions of the incident and scattered light, all forbidden Raman modes are distinctly detected. Optical simulations show that the edges of layered materials drastically distort the electromagnetic fields of both the incident and scattered light, so that the light interacts with the edges in a distinct way, which differs from its interactions with the body regions.〈/p〉
    Digitale ISSN: 2375-2548
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2018-12-15
    Beschreibung: The edges of layered materials have unique properties that substantially differ from the body regions. In this work, we perform a systematic Raman study of the edges of various layered materials (MoS 2 , WS 2 , WSe 2 , PtS 2 , and black phosphorus). The Raman spectra of the edges feature newly observed forbidden Raman modes, which are originally undetectable from the body region. By selecting the edge type and the polarization directions of the incident and scattered light, all forbidden Raman modes are distinctly detected. Optical simulations show that the edges of layered materials drastically distort the electromagnetic fields of both the incident and scattered light, so that the light interacts with the edges in a distinct way, which differs from its interactions with the body regions.
    Digitale ISSN: 2375-2548
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2016-03-06
    Beschreibung: A profound problem in modern condensed matter physics is discovering and understanding the nature of fluctuations and their coupling to fermions in cuprates, which lead to high-temperature superconductivity and the invariably associated strange metal state. We report the quantitative determination of normal and pairing self-energies, made possible by laser-based angle-resolved photoemission measurements of unprecedented accuracy and stability. Through a precise inversion procedure, both the effective interactions in the attractive d-wave symmetry and the repulsive part in the full symmetry are determined. The latter is nearly angle-independent. Near T c , both interactions are nearly independent of frequency and have almost the same magnitude over the complete energy range of up to about 0.4 eV, except for a low-energy feature at around 50 meV that is present only in the repulsive part, which has less than 10% of the total spectral weight. Well below T c , they both change similarly, with superconductivity-induced features at low energies. Besides finding the pairing self-energy and the attractive interactions for the first time, these results expose the central paradox of the problem of high T c : how the same frequency-independent fluctuations can dominantly scatter at angles ±/2 in the attractive channel to give d-wave pairing and lead to angle-independent repulsive scattering. The experimental results are compared with available theoretical calculations based on antiferromagnetic fluctuations, the Hubbard model, and quantum-critical fluctuations of the loop-current order.
    Digitale ISSN: 2375-2548
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019
    Beschreibung: 〈p〉Topological surface states (TSSs) in a topological insulator are expected to be able to produce a spin-orbit torque that can switch a neighboring ferromagnet. This effect may be absent if the ferromagnet is conductive because it can completely suppress the TSSs, but it should be present if the ferromagnet is insulating. This study reports TSS-induced switching in a bilayer consisting of a topological insulator Bi〈sub〉2〈/sub〉Se〈sub〉3〈/sub〉 and an insulating ferromagnet BaFe〈sub〉12〈/sub〉O〈sub〉19〈/sub〉. A charge current in Bi〈sub〉2〈/sub〉Se〈sub〉3〈/sub〉 can switch the magnetization in BaFe〈sub〉12〈/sub〉O〈sub〉19〈/sub〉 up and down. When the magnetization is switched by a field, a current in Bi〈sub〉2〈/sub〉Se〈sub〉3〈/sub〉 can reduce the switching field by ~4000 Oe. The switching efficiency at 3 K is 300 times higher than at room temperature; it is ~30 times higher than in Pt/BaFe〈sub〉12〈/sub〉O〈sub〉19〈/sub〉. These strong effects originate from the presence of more pronounced TSSs at low temperatures due to enhanced surface conductivity and reduced bulk conductivity.〈/p〉
    Digitale ISSN: 2375-2548
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019
    Beschreibung: 〈p〉Artificial intelligence and other data-intensive applications have escalated the demand for data storage and processing. New computing devices, e.g., phase-change random access memory (PCRAM) based neuro-inspired devices, are promising options for breaking the von Neumann barrier by unifying storage with computing in memory cells. However, current PCRAM devices have considerable noise and drift in electrical resistance that erodes the precision and consistency of these devices. We designed a phase-change heterostructure (PCH) consisting of alternately stacked phase-change and confinement nanolayers to suppress the noise and drift, allowing reliable iterative RESET and cumulative SET operations for high-performance neuro-inspired computing. Our PCH architecture is amenable to industrial production as an intrinsic materials solution, without complex manufacturing procedure nor much increased fabrication cost.〈/p〉
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2018
    Beschreibung: 〈p〉Cuprate superconductors have long been thought of as having strong electronic correlations but negligible spin-orbit coupling. Using spin- and angle-resolved photoemission spectroscopy, we discovered that one of the most studied cuprate superconductors, Bi2212, has a nontrivial spin texture with a spin-momentum locking that circles the Brillouin zone center and a spin-layer locking that allows states of opposite spin to be localized in different parts of the unit cell. Our findings pose challenges for the vast majority of models of cuprates, such as the Hubbard model and its variants, where spin-orbit interaction has been mostly neglected, and open the intriguing question of how the high-temperature superconducting state emerges in the presence of this nontrivial spin texture.〈/p〉
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2016-06-12
    Beschreibung: Strain is a novel approach to manipulating functionalities in correlated complex oxides. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness. Comprehensive designing principles of large vertical strain have been proposed. Phase-field simulations not only reveal the strain distribution but also suggest that the ultimate strain is related to the vertical interfacial area and interfacial dislocation density. By changing the nanoscaffold density and dimension, the strain and the magnetic properties can be tuned. The established correlation among the vertical interface—strain—properties in nanoscaffold films can consequently be used to tune other functionalities in a broad range of complex oxide films far beyond critical thickness.
    Digitale ISSN: 2375-2548
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2016-02-21
    Beschreibung: Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.
    Digitale ISSN: 2375-2548
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    American Association for the Advancement of Science (AAAS)
    Publikationsdatum: 2016-02-21
    Beschreibung: Anderson (disorder-induced) localization, proposed more than half a century ago, has inspired numerous efforts to explore the absence of wave diffusions in disordered media. However, the proposed disorder-induced metal-insulator transition (MIT), associated with the nonpropagative electron waves, has hardly been observed in three-dimensional (3D) crystalline materials, let alone single crystals. We report the observation of an MIT in centimeter-size single crystals of Li x Fe 7 Se 8 induced by lattice disorder. Both specific heat and infrared reflectance measurements reveal the presence of considerable electronic states in the vicinity of the Fermi level when the MIT occurs, suggesting that the transition is not due to Coulomb repulsion mechanism. The 3D variable range hopping regime evidenced by electrical transport measurements at low temperatures indicates the localized nature of the electronic states on the Fermi level. Quantitative analyses of carrier concentration, carrier mobility, and simulated density of states (DOS) fully support that Li x Fe 7 Se 8 is an Anderson insulator. On the basis of these results, we provide a unified DOS picture to explain all the experimental results, and a schematic diagram for finding other potential Anderson insulators. This material will thus serve as a rich playground for both theoretical and experimental investigations on MITs and disorder-induced phenomena.
    Digitale ISSN: 2375-2548
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019
    Beschreibung: 〈p〉Organic solid-state lasers are essential for various photonic applications, yet current-driven lasing remains a great challenge. Charge transfer (CT) complexes formed with p-/n-type organic semiconductors show great potential in electrically pumped lasers, but it is still difficult to achieve population inversion owing to substantial nonradiative loss from delocalized CT states. Here, we demonstrate the lasing action of CT complexes based on exciton funneling in p-type organic microcrystals with n-type doping. The CT complexes with narrow bandgap were locally formed and surrounded by the hosts with high-lying energy levels, which behave as artificial light-harvesting systems. Excitation light energy captured by the hosts was delivered to the CT complexes, functioning as exciton funnels to benefit lasing actions. The lasing wavelength of such composite microcrystals was further modulated by varying the degree of CT. The results offer a comprehensive understanding of exciton funneling in light-harvesting systems for the development of high-performance organic lasing devices.〈/p〉
    Digitale ISSN: 2375-2548
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...