ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Ecosystem  (2)
  • Action Potentials
  • American Association for the Advancement of Science (AAAS)  (3)
  • American Institute of Physics (AIP)
  • Amsterdam : Elsevier
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (3)
  • American Institute of Physics (AIP)
  • Amsterdam : Elsevier
Years
  • 1
    Publication Date: 2009-01-24
    Description: Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services such as carbon sequestration. Our analyses of longitudinal data from unmanaged old forests in the western United States showed that background (noncatastrophic) mortality rates have increased rapidly in recent decades, with doubling periods ranging from 17 to 29 years among regions. Increases were also pervasive across elevations, tree sizes, dominant genera, and past fire histories. Forest density and basal area declined slightly, which suggests that increasing mortality was not caused by endogenous increases in competition. Because mortality increased in small trees, the overall increase in mortality rates cannot be attributed solely to aging of large trees. Regional warming and consequent increases in water deficits are likely contributors to the increases in tree mortality rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Mantgem, Phillip J -- Stephenson, Nathan L -- Byrne, John C -- Daniels, Lori D -- Franklin, Jerry F -- Fule, Peter Z -- Harmon, Mark E -- Larson, Andrew J -- Smith, Jeremy M -- Taylor, Alan H -- Veblen, Thomas T -- New York, N.Y. -- Science. 2009 Jan 23;323(5913):521-4. doi: 10.1126/science.1165000.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Geological Survey, Western Ecological Research Center, Three Rivers, CA 93271, USA. pvanmantgem@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19164752" target="_blank"〉PubMed〈/a〉
    Keywords: Abies/anatomy & histology/growth & development ; *Climate ; *Coniferophyta/anatomy & histology/growth & development ; *Ecosystem ; Fires ; Models, Statistical ; Nonlinear Dynamics ; Northwestern United States ; Pinus/anatomy & histology/growth & development ; Temperature ; *Trees/growth & development ; Tsuga/anatomy & histology/growth & development ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-10-15
    Description: Crimmins et al. (Reports, 21 January 2011, p. 324) attributed an apparent downward elevational shift of California plant species to a precipitation-induced decline in climatic water deficit. We show that the authors miscalculated deficit, that the apparent decline in species' elevations is likely a consequence of geographic biases, and that unlike temperature changes, precipitation changes should not be expected to cause coordinated directional shifts in species' elevations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephenson, Nathan L -- Das, Adrian J -- New York, N.Y. -- Science. 2011 Oct 14;334(6053):177; author reply 177. doi: 10.1126/science.1205740.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉US Geological Survey, Western Ecological Research Center, Three Rivers, CA 93271, USA. nstephenson@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998371" target="_blank"〉PubMed〈/a〉
    Keywords: *Altitude ; *Climate Change ; *Ecosystem ; *Plants ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-08-25
    Description: Intracellular acidification of skeletal muscles is commonly thought to contribute to muscle fatigue. However, intracellular acidosis also acts to preserve muscle excitability when muscles become depolarized, which occurs with working muscles. Here, we show that this process may be mediated by decreased chloride permeability, which enables action potentials to still be propagated along the internal network of tubules in a muscle fiber (the T system) despite muscle depolarization. These results implicate chloride ion channels in muscle function and emphasize that intracellular acidosis of muscle has protective effects during muscle fatigue.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pedersen, Thomas H -- Nielsen, Ole B -- Lamb, Graham D -- Stephenson, D George -- New York, N.Y. -- Science. 2004 Aug 20;305(5687):1144-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Aarhus, DK-8000, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15326352" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Calcium/metabolism ; Chloride Channels/*metabolism ; Chlorides/metabolism ; Electric Stimulation ; Hydrogen-Ion Concentration ; In Vitro Techniques ; Lactic Acid/metabolism ; Membrane Potentials ; Muscle Contraction ; *Muscle Fatigue ; Muscle Fibers, Skeletal/metabolism/*physiology ; Muscle, Skeletal/metabolism/*physiology ; Permeability ; Potassium/metabolism ; Rats ; Sarcoplasmic Reticulum/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...