ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Climate Change  (2)
  • Rats  (2)
  • *Accidents  (1)
  • American Association for the Advancement of Science (AAAS)  (5)
  • American Institute of Physics (AIP)
  • Amsterdam : Elsevier
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (5)
  • American Institute of Physics (AIP)
  • Amsterdam : Elsevier
  • 1
    Publication Date: 2011-10-15
    Description: Crimmins et al. (Reports, 21 January 2011, p. 324) attributed an apparent downward elevational shift of California plant species to a precipitation-induced decline in climatic water deficit. We show that the authors miscalculated deficit, that the apparent decline in species' elevations is likely a consequence of geographic biases, and that unlike temperature changes, precipitation changes should not be expected to cause coordinated directional shifts in species' elevations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephenson, Nathan L -- Das, Adrian J -- New York, N.Y. -- Science. 2011 Oct 14;334(6053):177; author reply 177. doi: 10.1126/science.1205740.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉US Geological Survey, Western Ecological Research Center, Three Rivers, CA 93271, USA. nstephenson@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998371" target="_blank"〉PubMed〈/a〉
    Keywords: *Altitude ; *Climate Change ; *Ecosystem ; *Plants ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-08-25
    Description: Intracellular acidification of skeletal muscles is commonly thought to contribute to muscle fatigue. However, intracellular acidosis also acts to preserve muscle excitability when muscles become depolarized, which occurs with working muscles. Here, we show that this process may be mediated by decreased chloride permeability, which enables action potentials to still be propagated along the internal network of tubules in a muscle fiber (the T system) despite muscle depolarization. These results implicate chloride ion channels in muscle function and emphasize that intracellular acidosis of muscle has protective effects during muscle fatigue.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pedersen, Thomas H -- Nielsen, Ole B -- Lamb, Graham D -- Stephenson, D George -- New York, N.Y. -- Science. 2004 Aug 20;305(5687):1144-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Aarhus, DK-8000, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15326352" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Calcium/metabolism ; Chloride Channels/*metabolism ; Chlorides/metabolism ; Electric Stimulation ; Hydrogen-Ion Concentration ; In Vitro Techniques ; Lactic Acid/metabolism ; Membrane Potentials ; Muscle Contraction ; *Muscle Fatigue ; Muscle Fibers, Skeletal/metabolism/*physiology ; Muscle, Skeletal/metabolism/*physiology ; Permeability ; Potassium/metabolism ; Rats ; Sarcoplasmic Reticulum/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-22
    Description: Although disturbances such as fire and native insects can contribute to natural dynamics of forest health, exceptional droughts, directly and in combination with other disturbance factors, are pushing some temperate forests beyond thresholds of sustainability. Interactions from increasing temperatures, drought, native insects and pathogens, and uncharacteristically severe wildfire are resulting in forest mortality beyond the levels of 20th-century experience. Additional anthropogenic stressors, such as atmospheric pollution and invasive species, further weaken trees in some regions. Although continuing climate change will likely drive many areas of temperate forest toward large-scale transformations, management actions can help ease transitions and minimize losses of socially valued ecosystem services.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Millar, Constance I -- Stephenson, Nathan L -- New York, N.Y. -- Science. 2015 Aug 21;349(6250):823-6. doi: 10.1126/science.aaa9933.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Department of Agriculture Forest Service, Pacific Southwest Research Station, Albany, CA 94710, USA. cmillar@fs.fed.us. ; U.S. Geological Survey, Western Ecological Research Center, Three Rivers, CA 93271, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26293954" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Climate Change ; *Disasters ; Droughts ; Environmental Restoration and Remediation ; Fires ; *Forests ; Insects ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1982-05-21
    Description: Rat embryo fibroblasts transformed by Abelson murine leukemia virus (MuLV) produce and release a transforming growth factor (TGF). Production of this factor is correlated with a tyrosine-specific protein kinase that is functionally active and is associated with the major Abelson MuLV gene product, P120. Transformation-defective mutants of Abelson MuLV do not transform cells, do not have their virus coded transforming gene product phosphorylated in tyrosine, and do not induce TGF production. Abelson MuLV-induced TGF morphologically transforms cells in culture, competes with 125I-labeled epidermal growth factor (EGF) for binding to cell receptors, and induces phosphorylation of tyrosine acceptor sites in the 160,000-dalton EGF membrane receptor. After purification to homogeneity, Abelson virus-induced TGF migrates as a single polypeptide with an apparent size of 7400 daltons as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Twardzik, D R -- Todaro, G J -- Marquardt, H -- Reynolds, F H Jr -- Stephenson, J R -- New York, N.Y. -- Science. 1982 May 21;216(4548):894-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6177040" target="_blank"〉PubMed〈/a〉
    Keywords: Abelson murine leukemia virus ; Animals ; *Cell Transformation, Neoplastic ; *Cell Transformation, Viral ; Molecular Weight ; Peptides/*metabolism ; Phosphotyrosine ; Rats ; Receptor, Epidermal Growth Factor ; Receptors, Cell Surface/metabolism ; Transforming Growth Factors ; Tyrosine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1987-08-07
    Description: Measurements of cesium-134 and cesium-137 in Greenland snow together with models of long-range transport have been used to assess radionuclide deposition in the Arctic after the Chernobyl accident. The results suggest that a well-defined layer of radioactive cesium is now present in polar glaciers, providing a new reference for estimating snow accumulation rates and dating ice core samples.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davidson, C I -- Harrington, J R -- Stephenson, M J -- Monaghan, M C -- Pudykiewicz, J -- Schell, W R -- New York, N.Y. -- Science. 1987 Aug 7;237(4815):633-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3603043" target="_blank"〉PubMed〈/a〉
    Keywords: *Accidents ; *Cesium Radioisotopes ; Greenland ; Models, Theoretical ; *Nuclear Reactors ; *Radioactive Fallout ; Snow ; Ukraine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...