ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Crystallography, X-Ray  (37)
  • American Association for the Advancement of Science (AAAS)  (24)
  • Nature Publishing Group (NPG)  (13)
  • American Geophysical Union (AGU)
  • National Academy of Sciences
  • Springer
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (24)
  • Nature Publishing Group (NPG)  (13)
  • American Geophysical Union (AGU)
  • National Academy of Sciences
  • Springer
  • 1
    Publication Date: 2003-05-06
    Description: We have used adenosine diphosphate analogs containing electron paramagnetic resonance (EPR) spin moieties and EPR spectroscopy to show that the nucleotide-binding site of kinesin-family motors closes when the motor.diphosphate complex binds to microtubules. Structural analyses demonstrate that a domain movement in the switch 1 region at the nucleotide site, homologous to domain movements in the switch 1 region in the G proteins [heterotrimeric guanine nucleotide-binding proteins], explains the EPR data. The switch movement primes the motor both for the free energy-yielding nucleotide hydrolysis reaction and for subsequent conformational changes that are crucial for the generation of force and directed motion along the microtubule.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naber, Nariman -- Minehardt, Todd J -- Rice, Sarah -- Chen, Xiaoru -- Grammer, Jean -- Matuska, Marija -- Vale, Ronald D -- Kollman, Peter A -- Car, Roberto -- Yount, Ralph G -- Cooke, Roger -- Pate, Edward -- AR39643/AR/NIAMS NIH HHS/ -- AR42895/AR/NIAMS NIH HHS/ -- DK05915/DK/NIDDK NIH HHS/ -- GM29072/GM/NIGMS NIH HHS/ -- RR1081/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2003 May 2;300(5620):798-801.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of California, San Francisco, CA 94143, USA. naber@itsa.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730601" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine Nucleotides/*metabolism ; Adenosine Diphosphate/analogs & derivatives/metabolism ; Adenosine Triphosphate/analogs & derivatives/metabolism ; Animals ; Binding Sites ; Computer Simulation ; Crystallography, X-Ray ; *Drosophila Proteins ; Drosophila melanogaster ; Electron Spin Resonance Spectroscopy ; Humans ; Hydrogen Bonding ; Hydrolysis ; Kinesin/*chemistry/*metabolism ; Microtubules/*metabolism ; Models, Molecular ; Molecular Motor Proteins/*chemistry/*metabolism ; Molecular Probes/metabolism ; Protein Conformation ; Spin Labels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-04-20
    Description: Cadherins are transmembrane proteins that mediate adhesion between cells in the solid tissues of animals. Here we present the 3.1 angstrom resolution crystal structure of the whole, functional extracellular domain from C-cadherin, a representative "classical" cadherin. The structure suggests a molecular mechanism for adhesion between cells by classical cadherins, and it provides a new framework for understanding both cis (same cell) and trans (juxtaposed cell) cadherin interactions. The trans adhesive interface is a twofold symmetric interaction defined by a conserved tryptophan side chain at the membrane-distal end of a cadherin molecule from one cell, which inserts into a hydrophobic pocket at the membrane-distal end of a cadherin molecule from the opposing cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boggon, Titus J -- Murray, John -- Chappuis-Flament, Sophie -- Wong, Ellen -- Gumbiner, Barry M -- Shapiro, Lawrence -- NCI-P30-CA-08784/CI/NCPDCID CDC HHS/ -- R01 GM062270/GM/NIGMS NIH HHS/ -- R01 GM52717/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 May 17;296(5571):1308-13. Epub 2002 Apr 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964443" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; CHO Cells ; Cadherins/*chemistry/genetics/metabolism ; *Cell Adhesion ; Cricetinae ; Crystallography, X-Ray ; Dimerization ; Glycosylation ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry ; Tryptophan/chemistry ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-12-11
    Description: Tubby-like proteins (TULPs) are found in a broad range of multicellular organisms. In mammals, genetic mutation of tubby or other TULPs can result in one or more of three disease phenotypes: obesity (from which the name "tubby" is derived), retinal degeneration, and hearing loss. These disease phenotypes indicate a vital role for tubby proteins; however, no biochemical function has yet been ascribed to any member of this protein family. A structure-directed approach was employed to investigate the biological function of these proteins. The crystal structure of the core domain from mouse tubby was determined at a resolution of 1.9 angstroms. From primarily structural clues, experiments were devised, the results of which suggest that TULPs are a unique family of bipartite transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boggon, T J -- Shan, W S -- Santagata, S -- Myers, S C -- Shapiro, L -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2119-25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Department of Physiology and Biophysics, Ruttenberg Cancer Center, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10591637" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Alternative Splicing ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Nucleus/chemistry ; Crystallography, X-Ray ; DNA/metabolism ; Eye Proteins/*chemistry/genetics/*metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry/genetics/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Sequence Alignment ; Transcription Factors/*chemistry/genetics/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-05-26
    Description: Dysfunction of the tubby protein results in maturity-onset obesity in mice. Tubby has been implicated as a transcription regulator, but details of the molecular mechanism underlying its function remain unclear. Here we show that tubby functions in signal transduction from heterotrimeric GTP-binding protein (G protein)-coupled receptors. Tubby localizes to the plasma membrane by binding phosphatidylinositol 4,5-bisphosphate through its carboxyl terminal "tubby domain." X-ray crystallography reveals the atomic-level basis of this interaction and implicates tubby domains as phosphorylated-phosphatidyl- inositol binding factors. Receptor-mediated activation of G protein alphaq (Galphaq) releases tubby from the plasma membrane through the action of phospholipase C-beta, triggering translocation of tubby to the cell nucleus. The localization of tubby-like protein 3 (TULP3) is similarly regulated. These data suggest that tubby proteins function as membrane-bound transcription regulators that translocate to the nucleus in response to phosphoinositide hydrolysis, providing a direct link between G-protein signaling and the regulation of gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santagata, S -- Boggon, T J -- Baird, C L -- Gomez, C A -- Zhao, J -- Shan, W S -- Myszka, D G -- Shapiro, L -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):2041-50. Epub 2001 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ruttenberg Cancer Center, Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine of New York University, 1425 Madison Avenue New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11375483" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Cell Membrane/metabolism ; Cell Nucleus/*metabolism ; Cells, Cultured ; Crystallography, X-Ray ; GTP-Binding Protein alpha Subunits, Gq-G11 ; Gene Expression Regulation ; Heterotrimeric GTP-Binding Proteins/*metabolism ; Humans ; Isoenzymes/*metabolism ; Membrane Lipids/metabolism ; Mice ; Models, Biological ; Molecular Sequence Data ; Nuclear Localization Signals ; Obesity/genetics/metabolism ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phospholipase C beta ; Phosphorylation ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*metabolism ; Receptor, Serotonin, 5-HT2C ; Receptors, Muscarinic/metabolism ; Receptors, Serotonin/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription Factors/chemistry/genetics/*metabolism ; Type C Phospholipases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-01-04
    Description: Typical 2-Cys peroxiredoxins (Prxs) have an important role in regulating hydrogen peroxide-mediated cell signalling. In this process, Prxs can become inactivated through the hyperoxidation of an active site Cys residue to Cys sulphinic acid. The unique repair of this moiety by sulphiredoxin (Srx) restores peroxidase activity and terminates the signal. The hyperoxidized form of Prx exists as a stable decameric structure with each active site buried. Therefore, it is unclear how Srx can access the sulphinic acid moiety. Here we present the 2.6 A crystal structure of the human Srx-PrxI complex. This complex reveals the complete unfolding of the carboxy terminus of Prx, and its unexpected packing onto the backside of Srx away from the Srx active site. Binding studies and activity analyses of site-directed mutants at this interface show that the interaction is required for repair to occur. Moreover, rearrangements in the Prx active site lead to a juxtaposition of the Prx Gly-Gly-Leu-Gly and Srx ATP-binding motifs, providing a structural basis for the first step of the catalytic mechanism. The results also suggest that the observed interactions may represent a common mode for other proteins to bind to Prxs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646140/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646140/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jonsson, Thomas J -- Johnson, Lynnette C -- Lowther, W Todd -- R01 GM072866/GM/NIGMS NIH HHS/ -- R01 GM072866-03/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jan 3;451(7174):98-101. doi: 10.1038/nature06415.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Structural Biology and Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18172504" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites/genetics ; Catalysis ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Multiprotein Complexes/chemistry/genetics/metabolism ; Mutagenesis, Site-Directed ; Oxidation-Reduction ; Oxidoreductases/*chemistry/genetics/*metabolism ; Oxidoreductases Acting on Sulfur Group Donors ; Peroxiredoxins/*chemistry/genetics/*metabolism ; Protein Structure, Quaternary ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-06-17
    Description: Vesicular stomatitis virus is a negative-stranded RNA virus. Its nucleoprotein (N) binds the viral genomic RNA and is involved in multiple functions including transcription, replication, and assembly. We have determined a 2.9 angstrom structure of a complex containing 10 molecules of the N protein and 90 bases of RNA. The RNA is tightly sequestered in a cavity at the interface between two lobes of the N protein. This serves to protect the RNA in the absence of polynucleotide synthesis. For the RNA to be accessed, some conformational change in the N protein should be necessary.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, Todd J -- Zhang, Xin -- Wertz, Gail W -- Luo, Ming -- AI050066/AI/NIAID NIH HHS/ -- R37 AI012464/AI/NIAID NIH HHS/ -- R37 AI012464-28/AI/NIAID NIH HHS/ -- R37 AI012464-29/AI/NIAID NIH HHS/ -- R37 AI012464-30/AI/NIAID NIH HHS/ -- R37 AI012464-31/AI/NIAID NIH HHS/ -- R37AI012464/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2006 Jul 21;313(5785):357-60. Epub 2006 Jun 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, School of Medicine, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16778022" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleocapsid Proteins/*chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA, Viral/*chemistry/metabolism ; Ribonucleoproteins/*chemistry ; Sequence Alignment ; Vesicular stomatitis Indiana virus/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-08-19
    Description: Integral beta-barrel proteins are found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. The machine that assembles these proteins contains an integral membrane protein, called YaeT in Escherichia coli, which has one or more polypeptide transport-associated (POTRA) domains. The crystal structure of a periplasmic fragment of YaeT reveals the POTRA domain fold and suggests a model for how POTRA domains can bind different peptide sequences, as required for a machine that handles numerous beta-barrel protein precursors. Analysis of POTRA domain deletions shows which are essential and provides a view of the spatial organization of this assembly machine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Seokhee -- Malinverni, Juliana C -- Sliz, Piotr -- Silhavy, Thomas J -- Harrison, Stephen C -- Kahne, Daniel -- GM34821/GM/NIGMS NIH HHS/ -- GM66174/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 17;317(5840):961-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702946" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Outer Membrane Proteins/*chemistry/genetics/*metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Dimerization ; Escherichia coli/*chemistry/*metabolism ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Lipoproteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-02-06
    Description: Vesicular stomatitis virus (VSV) is a bullet-shaped rhabdovirus and a model system of negative-strand RNA viruses. Through direct visualization by means of cryo-electron microscopy, we show that each virion contains two nested, left-handed helices: an outer helix of matrix protein M and an inner helix of nucleoprotein N and RNA. M has a hub domain with four contact sites that link to neighboring M and N subunits, providing rigidity by clamping adjacent turns of the nucleocapsid. Side-by-side interactions between neighboring N subunits are critical for the nucleocapsid to form a bullet shape, and structure-based mutagenesis results support this description. Together, our data suggest a mechanism of VSV assembly in which the nucleocapsid spirals from the tip to become the helical trunk, both subsequently framed and rigidified by the M layer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Peng -- Tsao, Jun -- Schein, Stan -- Green, Todd J -- Luo, Ming -- Zhou, Z Hong -- AI050066/AI/NIAID NIH HHS/ -- AI069015/AI/NIAID NIH HHS/ -- GM071940/GM/NIGMS NIH HHS/ -- R01 AI050066/AI/NIAID NIH HHS/ -- R01 AI050066-08/AI/NIAID NIH HHS/ -- R01 AI069015/AI/NIAID NIH HHS/ -- R01 GM071940/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 5;327(5966):689-93. doi: 10.1126/science.1181766.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20133572" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Lipid Bilayers ; Models, Molecular ; Mutagenesis ; Nucleocapsid Proteins/*chemistry/genetics/ultrastructure ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; RNA, Viral/*chemistry/ultrastructure ; Vesiculovirus/*chemistry/physiology/*ultrastructure ; Viral Matrix Proteins/*chemistry/ultrastructure ; Virion/chemistry/ultrastructure ; Virus Assembly
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-06-28
    Description: Carbon-fluorine bonds are the strongest known single bonds to carbon and as a consequence can prove very hard to cleave. Alhough vinyl and aryl C-F bonds can undergo oxidative addition to transition metal complexes, this reaction has appeared inoperable with aliphatic substrates. We report the addition of C(sp(3))-F bonds (including alkyl-F) to an iridium center via the initial, reversible cleavage of a C-H bond. These results suggest a distinct strategy for the development of catalysts and promoters to make and break C-F bonds, which are of strong interest in the context of both pharmaceutical and environmental chemistry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Jongwook -- Wang, David Y -- Kundu, Sabuj -- Choliy, Yuriy -- Emge, Thomas J -- Krogh-Jespersen, Karsten -- Goldman, Alan S -- New York, N.Y. -- Science. 2011 Jun 24;332(6037):1545-8. doi: 10.1126/science.1200514.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, New Brunswick, NJ 08903, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21700870" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/*chemistry ; Coordination Complexes/chemistry ; Crystallization ; Crystallography, X-Ray ; Fluorides/chemistry ; Fluorine/*chemistry ; Hydrocarbons, Fluorinated/chemistry ; Hydrogen/*chemistry ; Iridium/chemistry ; Magnetic Resonance Spectroscopy ; Molecular Structure ; Oxidation-Reduction ; Physicochemical Processes ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-07-23
    Description: Type II topoisomerases (TOP2s) resolve the topological problems of DNA by transiently cleaving both strands of a DNA duplex to form a cleavage complex through which another DNA segment can be transported. Several widely prescribed anticancer drugs increase the population of TOP2 cleavage complex, which leads to TOP2-mediated chromosome DNA breakage and death of cancer cells. We present the crystal structure of a large fragment of human TOP2beta complexed to DNA and to the anticancer drug etoposide to reveal structural details of drug-induced stabilization of a cleavage complex. The interplay between the protein, the DNA, and the drug explains the structure-activity relations of etoposide derivatives and the molecular basis of drug-resistant mutations. The analysis of protein-drug interactions provides information applicable for developing an isoform-specific TOP2-targeting strategy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Chyuan-Chuan -- Li, Tsai-Kun -- Farh, Lynn -- Lin, Li-Ying -- Lin, Te-Sheng -- Yu, Yu-Jen -- Yen, Tien-Jui -- Chiang, Chia-Wang -- Chan, Nei-Li -- New York, N.Y. -- Science. 2011 Jul 22;333(6041):459-62. doi: 10.1126/science.1204117.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City 100, Taiwan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778401" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Catalytic Domain ; Crystallography, X-Ray ; DNA/*chemistry/metabolism ; DNA Topoisomerases, Type II/*chemistry/genetics/metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; Drug Resistance, Neoplasm ; Etoposide/analogs & derivatives/*chemistry/metabolism/*pharmacology ; Humans ; Models, Molecular ; Mutant Proteins/chemistry/metabolism ; Mutation ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Structure-Activity Relationship ; Topoisomerase II Inhibitors/*chemistry/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...