ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Base Sequence  (7)
  • Cell Line  (6)
  • low temperature  (6)
  • American Association for the Advancement of Science (AAAS)  (13)
  • Springer  (6)
  • American Geophysical Union
  • Cambridge University Press
  • Taylor & Francis
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (13)
  • Springer  (6)
  • American Geophysical Union
  • Cambridge University Press
  • Taylor & Francis
  • +
  • 1
    ISSN: 1573-5028
    Keywords: barley ; cold ; cDNA ; EF-1α ; elongation factor 1α ; low temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA clone (pBLT63) encoding a protein synthesis elongation factor 1α (EF-1α) was isolated from a low-temperature winter barley shoot meristem library by differential screening. The nucleotide sequence of the coding region of the low-temperature-induced barley gene shows very high homology with two EF-1α plant genes from tomato and Arabidopsis. The barley genome contains an EF-1α gene family situated on the short arm of chromosome 2 and the long arm of chromosome 5. The nucleotide sequence data reported will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession number Z23130.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: cold ; low temperature ; barley ; gene expression ; cDNA ; shoot meristem
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA clone of the previously unreported low-temperature-induced gene blt101 was isolated after a differential screen of a cDNA library prepared from low-temperature (6 °C day/2 °C night) grown barley shoot meristems. Southern blot analysis of barley ditelosomic addition lines was used to assign this single-copy gene to the long arm of chromosome 4. Analysis of steady-state levels of blt101 mRNA showed the induction of this transcript in shoot meristems upon transfer of barley (cv. Igri) plants from control (20 °C/15 °C) to low (6 °C/2 °C) temperature treatment. Further, the high level of this transcript is maintained at low temperatures but is reduced on transfer from low to control temperatures. The gene is not induced by drought or by foliar application of ABA. Analysis of segregating doubled haploid lines shows that there is no specific association of this gene with either spring/winter growth habit or frost hardiness. Examination of the spatial expression pattern revealed ubiquitous expression of blt101 in low-temperature (6 °C/2 °C) grown barley shoot meristems, mature leaves and roots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4927
    Keywords: butterfly ; flight ; low temperature ; Pgi locus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Differences in genetic structure of samples of monarch butterflies caught at different times of day have been reported previously. This paper compares differences in allele and heterozygote frequencies at thePgi locus between animals flying early and those flying late in outdoor flight cages and between animals able and animals unable to fly at a constant low temperature. There were consistent effects across a number of tests and in comparisons with field data, especially in males. Animals with the Mallele were more likely to be able to fly at low temperatures, to become active early in outdoor flight cages, and to be caught early in the field. Also, differences were observed between males and females in the effect of allele on flight activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5028
    Keywords: barley ; low temperature ; frost acclimation ; glycine-rich ; RNA-binding protein ; abscisic acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A low-temperature-responsive gene, blt 801, isolated from a winter barley (Hordeum vulgare L.) cDNA library prepared from leaf meristematic tissue, was sequenced. The deduced amino acid sequence predicts a glycine-rich RNA-binding protein (GR-RNP) which was homology to stress-responsive GR-RNPs from several other plant species. BLT 801 is a two-domain protein, the amino-terminal domain comprises a consensus RNA-binding domain similar to that found in many eukaryotic genes and the carboxy-terminal domain is extremely glycine-rich (68.5% glycine). Blt 801 mRNA also accumulates in response to the phytohormone abscisic acid. The protein encoded by blt 801 has been produced as a recombinant fusion protein using a bacterial expression vector. The fusion protein, a chimaera of glutathione S-transferase and BLT 801, has been used in studies to determine nucleic acid binding and other characteristics. Binding studies with single-stranded nucleic acids show that BLT 801 has affinity for homoribopolymers G, A and U but not C, it also binds to single-stranded DNA and selects RNA molecules containing open loop structures enriched in adenine but low in cytosine. BLT 801 has a consensus motif for phosphorylation by cAMP protein kinase (PKA) at the junction between the two domains which can be phosphorylated by PKA in vitro and which, by analogy to animal studies, may have significance for controlling enzyme function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-4927
    Keywords: butterfly ; flight ; low temperature ; Pgi locus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Differences in genetic structure of samples of monarch butterflies caught at different times of day have been reported previously. This paper compares differences in allele and heterozygote frequencies at thePgi locus between animals flying early and those flying late in outdoor flight cages and between animals able and animals unable to fly at a constant low temperature. There were consistent effects across a number of tests and in comparisons with field data, especially in males. Animals with the Mallele were more likely to be able to fly at low temperatures, to become active early in outdoor flight cages, and to be caught early in the field. Also, differences were observed between males and females in the effect of allele on flight activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5028
    Keywords: barley ; cold ; electrophoretic mobility shift assay ; lipid transfer protein ; low temperature ; promoter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The blt4 barley gene family encodes non-specific lipid transfer proteins and has been shown, by in situ localisation, to be expressed in the epidermal cells of leaves. The transcriptionally controlled, low-temperature-responsive member of this gene family, blt4.9, is predominantly expressed in shoot meristems. The promoter region (1938 bp) of blt4.9 contains sequence motifs which have been implicated in responses to low temperature, abscisic acid and other environmental factors. Deletion analysis showed that a 42 bp sequence proximal to, but not including, the CAAT and TATA boxes, confers enhanced low-temperature response to a reporter gene in a barley shoot explant transient expression system. Other promoter regions were shown to contain negative and positive regulatory regions. Electrophoretic mobility shift analysis (EMSA) was used with nuclear proteins from either low-temperature- or control-temperature-treated plants to further investigate the blt4.9 promoter. Synthetic oligonucleotides were used to identify a hexanucleotide, CCGAAA, within the 42 bp, low-temperature-responsive promoter region, as the binding site of a low-mobility nuclear protein complex. This complex was present in nuclear extracts from both low-temperature-treated and control plants and was the only complex formed within this region. Mutation of the CCGAAA motif within the low-temperature-responsive 42 bp promoter sequence reduced low-temperature responsiveness to basal levels. A related upstream element, CCGAC, known to be a low-temperature-responsive element in other plants, did not bind to nuclear proteins in this study. It is proposed that the hexanucleotide CCGAAA, at -195 from the first ATG, is involved in the low-temperature response of blt4.9 in barley.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-07-26
    Description: The SWI/SNF complex participates in the restructuring of chromatin for transcription. The function of the yeast SWI/SNF complex in the remodeling of a nucleosome array has now been analyzed in vitro. Binding of the purified SWI/SNF complex to a nucleosome array disrupted multiple nucleosomes in an adenosine triphosphate-dependent reaction. However, removal of SWI/SNF left a deoxyribonuclease I-hypersensitive site specifically at a nucleosome that was bound by derivatives of the transcription factor Gal4p. Analysis of individual nucleosomes revealed that the SWI/SNF complex catalyzed eviction of histones from the Gal4-bound nucleosomes. Thus, the transient action of the SWI/SNF complex facilitated irreversible disruption of transcription factor-bound nucleosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owen-Hughes, T -- Utley, R T -- Cote, J -- Peterson, C L -- Workman, J L -- GM47867/GM/NIGMS NIH HHS/ -- R01 GM049650/GM/NIGMS NIH HHS/ -- R37 GM049650/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 26;273(5274):513-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology and Center for Gene Regulation, Pennsylvania State University, University Park, PA 16802-4500, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662543" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases ; Adenosine Triphosphate/metabolism ; Base Sequence ; Binding Sites ; DNA, Fungal/metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease I/metabolism ; Fungal Proteins/*metabolism ; Histones/metabolism ; Molecular Sequence Data ; *Nuclear Proteins ; Nucleosomes/*metabolism/ultrastructure ; Saccharomyces cerevisiae ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1989-11-03
    Description: A complementary DNA (cDNA) for ubiquitin carboxyl-terminal hydrolase isozyme L3 was cloned from human B cells. The cDNA encodes a protein of 230 amino acids with a molecular mass of 26.182 daltons. The human protein is very similar to the bovine homolog, with only three amino acids differing in over 100 residues compared. The amino acid sequence deduced from the cDNA was 54% identical to that of the neuron-specific protein PGP 9.5. Purification of bovine PGP 9.5 confirmed that it is also a ubiquitin carboxyl-terminal hydrolase. These results suggest that a family of such related proteins exists and that their expression is tissue-specific.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilkinson, K D -- Lee, K M -- Deshpande, S -- Duerksen-Hughes, P -- Boss, J M -- Pohl, J -- New York, N.Y. -- Science. 1989 Nov 3;246(4930):670-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2530630" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/enzymology ; Base Sequence ; Cattle ; DNA/genetics ; Humans ; Isoenzymes/genetics ; Molecular Sequence Data ; Neuropeptides/*genetics/isolation & purification ; Sequence Homology, Nucleic Acid ; Thiolester Hydrolases/*genetics/isolation & purification ; Ubiquitin Thiolesterase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-10-27
    Description: The melanocortin 1 receptor (MC1R) regulates pigmentation in humans and other vertebrates. Variants of MC1R with reduced function are associated with pale skin color and red hair in humans of primarily European origin. We amplified and sequenced a fragment of the MC1R gene (mc1r) from two Neanderthal remains. Both specimens have a mutation that was not found in approximately 3700 modern humans analyzed. Functional analyses show that this variant reduces MC1R activity to a level that alters hair and/or skin pigmentation in humans. The impaired activity of this variant suggests that Neanderthals varied in pigmentation levels, potentially on the scale observed in modern humans. Our data suggest that inactive MC1R variants evolved independently in both modern humans and Neanderthals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lalueza-Fox, Carles -- Rompler, Holger -- Caramelli, David -- Staubert, Claudia -- Catalano, Giulio -- Hughes, David -- Rohland, Nadin -- Pilli, Elena -- Longo, Laura -- Condemi, Silvana -- de la Rasilla, Marco -- Fortea, Javier -- Rosas, Antonio -- Stoneking, Mark -- Schoneberg, Torsten -- Bertranpetit, Jaume -- Hofreiter, Michael -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1453-5. Epub 2007 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departament de Biologia Animal, Universitat de Barcelona, Spain. clalueza@ub.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962522" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Substitution ; Animals ; Biological Evolution ; Cell Line ; DNA/genetics ; *Fossils ; Hair Color/*genetics ; Hominidae/*genetics ; Humans ; Molecular Sequence Data ; *Mutation ; Polymerase Chain Reaction ; Receptor, Melanocortin, Type 1/chemistry/*genetics/metabolism ; Sequence Analysis, DNA ; Skin Pigmentation/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-05-16
    Description: Sequence preferences of DNA binding proteins are a primary mechanism by which cells interpret the genome. Despite the central importance of these proteins in physiology, development, and evolution, comprehensive DNA binding specificities have been determined experimentally for only a few proteins. Here, we used microarrays containing all 10-base pair sequences to examine the binding specificities of 104 distinct mouse DNA binding proteins representing 22 structural classes. Our results reveal a complex landscape of binding, with virtually every protein analyzed possessing unique preferences. Roughly half of the proteins each recognized multiple distinctly different sequence motifs, challenging our molecular understanding of how proteins interact with their DNA binding sites. This complexity in DNA recognition may be important in gene regulation and in the evolution of transcriptional regulatory networks.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905877/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905877/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Badis, Gwenael -- Berger, Michael F -- Philippakis, Anthony A -- Talukder, Shaheynoor -- Gehrke, Andrew R -- Jaeger, Savina A -- Chan, Esther T -- Metzler, Genita -- Vedenko, Anastasia -- Chen, Xiaoyu -- Kuznetsov, Hanna -- Wang, Chi-Fong -- Coburn, David -- Newburger, Daniel E -- Morris, Quaid -- Hughes, Timothy R -- Bulyk, Martha L -- R01 HG003985/HG/NHGRI NIH HHS/ -- R01 HG003985-01/HG/NHGRI NIH HHS/ -- R01 HG003985-02/HG/NHGRI NIH HHS/ -- R01 HG003985-03/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jun 26;324(5935):1720-3. doi: 10.1126/science.1162327. Epub 2009 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19443739" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; DNA/chemistry/*metabolism ; Electrophoretic Mobility Shift Assay ; Gene Expression Regulation ; Gene Regulatory Networks ; Humans ; Mice ; Protein Array Analysis ; Protein Binding ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Transcription Factors/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...