ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • bubble-point pressure  (3)
  • Springer  (3)
  • American Association for the Advancement of Science
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 12 (1991), S. 1029-1038 
    ISSN: 1572-9567
    Keywords: bubble-point pressure ; HCFC 142b (CH3 CClF2) ; HFC 152a (CH3 CHF2) ; mixtures ; refrigerants ; saturated liquid density
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Forty-eight sets of the saturated liquid densities and bubble-point pressures of the binary HFC 152a + HCFC 142b system were measured with a magnetic densimeter coupled with a variable-volume cell. The measurements obtained at four compositions, 20, 40, 60, and 80 wt%, of HFC 152a cover a range of temperatures from 280 to 400 K. The experimental uncertainties in temperature, pressure, density, and composition were estimated to be within ±15mK, ±20kPa, ±0.2%, and between −0.14 and ±0.01 wt% HFC 152a (−0.01 and + 0.14 wt% HCFC 142b), respectively. The purities of the samples were 99.9 wt% for HFC 152a and 99.8 wt% for HCFC 142b. A binary interaction parameter, k ij , in the Peng-Robinson equation of state was determined as a function of temperature for representing the bubble-point pressures. On the other hand, two constant binary-interaction parameters, k ij and l ij , were introduced into the mixing rule of the Hankinson-Brobst-Thomson equation for representing the saturated liquid densities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 16 (1995), S. 801-810 
    ISSN: 1572-9567
    Keywords: alternative refrigerants ; binary mixtures ; bubble-point pressure ; saturated-liquid density ; vapor-liquid equilibria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Bubble-point pressures and saturated-liquid densities of the binary R-135 (pentafuoroethane) + R- 143a ( 1, 1, 1-trifluoroethane) system have been measured for several compositions at temperatures from 280 to 330 K by means of a magnetic densimeter coupled with a variable-volume cell mounted with a metallic bellows. The experimental uncertainties of the temperature, pressure. and density measurements and the composition determination were estimated to be within ±15 mK, ±13 k Pa, ±0.2%, and ±0.1 wt%, respectively. The purities of the samples used throughout the measurements are 99.98 wt% for R-125 and 99.0 mol % for R- 143a. Based on the present data, the thermodynamic behavior of the vapor-liquid equilibria of this binary refrigerant mixture has been evaluated by using the Peng-Robinson equation for the bubble-point pressures, and the modified Hankinson-Brobst-Thomson equation for the saturated-liquid densities. This was done to identify the optimized binary interaction parameters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 20 (1999), S. 911-922 
    ISSN: 1572-9567
    Keywords: alternative refrigerant ; binary R-125 + R-143a mixtures ; bubble-point pressure ; compressed-liquid density ; R-125 ; R-143a ; saturated-liquid density ; vapor-liquid equilibria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Bubble-point pressures and saturated- and compressed-liquid densities of the binary R-125 (pentafluoroethane) + R-143a (1,1,1 -trifluoroethane) system have been measured for several compositions at temperatures from 280 to 330 K by means of a magnetic densimeter coupled with a variable-volume cell mounted with a metallic bellows. The experimental uncertainties of the temperature, pressure, density, and composition were estimated to be within ±10mK, ± 12 kPa, ±0.2%, and ±0.2mass%, respectively. The purities of the samples used throughout the measurements are 99.96 area% for R-125 and 99.94 area% for R-143a. Based on these measurements, the thermodynamic behavior of the vapor-liquid equilibria of this binary refrigerant mixture has been represented using the Peng–Robinson equation for the bubble-point pressures, a correlation for the saturated-liquid densities, and an equation of state for the compressed-liquid densities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...