ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (19)
  • John Wiley & Sons  (14)
  • American Association for the Advancement of Science  (3)
  • Association for the Sciences of Limnology and Oceanography  (1)
  • PERGAMON-ELSEVIER SCIENCE LTD  (1)
Collection
  • Articles  (19)
  • 1
    Publication Date: 2020-10-01
    Description: Export from the Arctic and meltwater from the Greenland Ice Sheet together form a southward-flowing coastal current along the East Greenland shelf. This current transports enough fresh water to substantially alter the large-scale circulation of the North Atlantic, yet the coastal current’s origin and fate are poorly known due to our lack of knowledge concerning its north-south connectivity. Here, we demonstrate how the current negotiates the complex topography of Denmark Strait using in situ data and output from an ocean circulation model. We determine that the coastal current north of the strait supplies half of the transport to the coastal current south of the strait, while the other half is sourced from offshore via the shelfbreak jet, with little input from the Greenland Ice Sheet. These results indicate that there is a continuous pathway for Arctic-sourced fresh water along the entire East Greenland shelf from Fram Strait to Cape Farewell.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-15
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-18
    Description: The recently discovered East Greenland Spill Jet is a bottom-intensified current on the upper continental slope south of Denmark Strait, transporting intermediate density water equatorward. Until now the Spill Jet has only been observed with limited summertime measurements from ships. Here we present the first year-round mooring observations demonstrating that the current is a ubiquitous feature with a volume transport similar to the well-known plume of Denmark Strait overflow water farther downslope. Using reverse particle tracking in a high-resolution numerical model, we investigate the upstream sources feeding the Spill Jet. Three main pathways are identified: particles flowing directly into the Spill Jet from the Denmark Strait sill; particles progressing southward on the East Greenland shelf that subsequently spill over the shelfbreak into the current; and ambient water from the Irminger Sea that gets entrained into the flow. The two Spill Jet pathways emanating from Denmark Strait are newly resolved, and long-term hydrographic data from the strait verifies that dense water is present far onto the Greenland shelf. Additional measurements near the southern tip of Greenland suggest that the Spill Jet ultimately merges with the deep portion of the shelfbreak current, originally thought to be a lateral circulation associated with the sub-polar gyre. Our study thus reveals a previously unrecognized significant component of the Atlantic Meridional Overturning Circulation that needs to be considered to understand fully the ocean's role in climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 6978–6992, doi:10.1002/2015JC011607.
    Description: Hydrographic data from the Labrador Sea collected in February–March 1997, together with atmospheric reanalysis fields, are used to explore relationships between the air-sea fluxes and the observed mixed-layer depths. The strongest winds and highest heat fluxes occurred in February, due to the nature and tracks of the storms. While greater numbers of storms occurred earlier and later in the winter, the storms in February followed a more organized track extending from the Gulf Stream region to the Irminger Sea where they slowed and deepened. The canonical low-pressure system that drives convection is located east of the southern tip of Greenland, with strong westerly winds advecting cold air off the ice edge over the warm ocean. The deepest mixed layers were observed in the western interior basin, although the variability in mixed-layer depth was greater in the eastern interior basin. The overall trend in mixed-layer depth through the winter in both regions of the basin was consistent with that predicted by a 1-D mixed-layer model. We argue that the deeper mixed layers in the west were due to the enhanced heat fluxes on that side of the basin as opposed to oceanic preconditioning.
    Description: National Science Foundation (RP); Natural Science and Engineering Research Council of Canada Grant Number: OCE-1259618
    Description: 2017-03-22
    Keywords: Labrador Sea ; Convection ; Impact of storms ; Storm tracks ; Mixed layers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 93-109, doi:10.1002/2016JC012106.
    Description: Liquid freshwater transports of the shelfbreak East Greenland Current (EGC) and the separated EGC are determined from mooring records from the Kögur section north of Denmark Strait between August 2011 and July 2012. The 11 month mean freshwater transport (FWT), relative to a salinity of 34.8, was 65 ± 11 mSv to the south. Approximately 70% of this was associated with the shelfbreak EGC and the remaining 30% with the separated EGC. Very large southward FWT ranging from 160 mSv to 120 mSv was observed from September to mid-October 2011 and was foremost due to anomalously low upper-layer salinities. The FWT may, however, be underestimated by approximately 5 mSv due to sampling biases in the upper ocean. The FWT on the Greenland shelf was estimated using additional inshore moorings deployed from 2012 to 2014. While the annual mean ranged from nearly zero during the first year to 18 mSv to the south during the second year, synoptically the FWT on the shelf can be significant. Furthermore, an anomalous event in autumn 2011 caused the shelfbreak EGC to reverse, leading to a large reduction in FWT. This reversed circulation was due to the passage of a large, 100 km wide anticyclone originating upstream from the shelfbreak. The late summer FWT of −131 mSv is 150% larger than earlier estimates based on sections in the late-1990s and early-2000s. This increase is likely the result of enhanced freshwater flux from the Arctic Ocean to the Nordic Seas during the early 2010s.
    Description: European Union Seventh Framework Programme Grant Numbers: (FP7 2007–2013), 308299; US National Science Foundation Grant Number: OCE-0959381
    Description: 2017-07-10
    Keywords: Freshwater ; East Greenland Current ; Mooring observations ; Time series
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 122 (2017): 2409–2417, doi:10.1002/2017JG003881.
    Description: Measurements of late springtime nutrient concentrations in Arctic waters are relatively rare due to the extensive sea ice cover that makes sampling difficult. During the SUBICE (Study of Under-ice Blooms In the Chukchi Ecosystem) cruise in May–June 2014, an extensive survey of hydrography and prebloom concentrations of inorganic macronutrients, oxygen, particulate organic carbon and nitrogen, and chlorophyll a was conducted in the northeastern Chukchi Sea. Cold (〈−1.5°C) winter water was prevalent throughout the study area, and the water column was weakly stratified. Nitrate (NO3−) concentration averaged 12.6 ± 1.92 μM in surface waters and 14.0 ± 1.91 μM near the bottom and was significantly correlated with salinity. The highest NO3− concentrations were associated with winter water within the Central Channel flow path. NO3− concentrations were much reduced near the northern shelf break within the upper halocline waters of the Canada Basin and along the eastern side of the shelf near the Alaskan coast. Net community production (NCP), estimated as the difference in depth-integrated NO3− content between spring (this study) and summer (historical), varied from 28 to 38 g C m−2 a−1. This is much lower than previous NCP estimates that used NO3− concentrations from the southeastern Bering Sea as a baseline. These results demonstrate the importance of using profiles of NO3− measured as close to the beginning of the spring bloom as possible when estimating local NCP. They also show that once the snow melts in spring, increased light transmission through the sea ice to the waters below the ice could fuel large phytoplankton blooms over a much wider area than previously known.
    Description: NSF Office of Polar Programs Grant Numbers: PLR-1304563, PLR-1303617
    Description: 2018-03-18
    Keywords: Chukchi Sea ; Nitrate ; Phytoplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 3628–3635, doi:10.1002/2014GL059940.
    Description: The Labrador Sea is a region of climatic importance as a result of the occurrence of oceanic wintertime convection, a process that is integral to the Atlantic Meridional Overturning Circulation. This process requires large air-sea heat fluxes that result in a loss of surface buoyancy, triggering convective overturning of the water column. The Labrador Sea wintertime turbulent heat flux maximum is situated downstream of the ice edge, a location previously thought to be causal. Here we show that there is considerable similarity in the characteristics of the regional mean atmospheric circulation and high heat flux events over the Labrador Sea during early winter, when the ice is situated to the north, and midwinter, when it is near the region of maximum heat loss. This suggests that other factors, including the topography of the nearby upstream and downstream landmasses, contribute to the location of the heat flux maximum.
    Description: G.W.K.M. was supported by the Natural Sciences and Engineering Research Council of Canada. R.S.P. was supported by grant OCE-085041 from the U.S. National Science Foundation. I. A.R. would like to acknowledge support from NERC grant NE/I005293/1. K.V. received funding from NACLIM, a project of the European Union Seventh Framework Programme under grant agreement 308299.
    Description: 2014-11-19
    Keywords: Air-sea interaction ; Oceanic convection ; Extratropical cyclones ; Flow distortion ; Polar meterorology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 6373-6391, doi:10.1029/2018JC013814.
    Description: We quantify Atlantic Water heat loss north of Svalbard using year‐long hydrographic and current records from three moorings deployed across the Svalbard Branch of the Atlantic Water boundary current in 2012–2013. The boundary current loses annually on average 16 W m−2 during the eastward propagation along the upper continental slope. The largest vertical fluxes of 〉100 W m−2 occur episodically in autumn and early winter. Episodes of sea ice imported from the north in November 2012 and February 2013 coincided with large ocean‐to‐ice heat fluxes, which effectively melted the ice and sustained open water conditions in the middle of the Arctic winter. Between March and early July 2013, a persistent ice cover‐modulated air‐sea fluxes. Melting sea ice at the start of the winter initiates a cold, up to 100‐m‐deep halocline separating the ice cover from the warm Atlantic Water. Semidiurnal tides dominate the energy over the upper part of the slope. The vertical tidal structure depends on stratification and varies seasonally, with the potential to contribute to vertical fluxes with shear‐driven mixing. Further processes impacting the heat budget include lateral heat loss due to mesoscale eddies, and modest and negligible contributions of Ekman pumping and shelf break upwelling, respectively. The continental slope north of Svalbard is a key example regarding the role of ocean heat for the sea ice cover. Our study underlines the complexity of the ocean's heat budget that is sensitive to the balance between oceanic heat advection, vertical fluxes, air‐sea interaction, and the sea ice cover.
    Description: Arctic Ocean program at the FRAM-High North Research Centre for Climate and the environment; National Science Foundation (NSF) Grant Number: ARC-1264098; Polish-Norwegian Research Programme Grant Number: POL-NOR/202006/10/2013; Research Council of Norway Grant Number: 276730; Steven Grossman Family Foundation
    Keywords: Atlantic Water ; Arctic Ocean ; Heat flux ; Nansen Basin ; Boundary current ; A‐TWAIN
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2013. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Association for the Sciences of Limnology and Oceanography, doi:10.4319/lo.2013.58.3.0803.
    Description: Decadal-scale regime shifts in Northwest Atlantic shelf ecosystems can be remotely forced by climate-associated atmosphere–ocean interactions in the North Atlantic and Arctic Ocean Basins. This remote climate forcing is mediated primarily by basin- and hemispheric-scale changes in ocean circulation. We review and synthesize results from process-oriented field studies and retrospective analyses of time-series data to document the linkages between climate, ocean circulation, and ecosystem dynamics. Bottom-up forcing associated with climate plays a prominent role in the dynamics of these ecosystems, comparable in importance to that of top-down forcing associated with commercial fishing. A broad perspective, one encompassing the effects of basin- and hemispheric-scale climate processes on marine ecosystems, will be critical to the sustainable management of marine living resources in the Northwest Atlantic.
    Description: Funding for this research was provided by the National Science Foundation as part of the Regional and Pan-Regional Synthesis Phases of the U.S. Global Ocean Ecosystem (GLOBEC) Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 2326–2332, doi:10.1002/2014GL062759.
    Description: Results from three hydrographic surveys across the East Greenland Current between 2011 and 2013 are presented with focus on the freshwater sources. End-member analysis using salinity, δ18O, and nutrient data shows that while meteoric water dominated the freshwater content, a significant amount of Pacific freshwater was present near Denmark Strait with a maximum in August 2013. While in 2011 and 2012 the net sea ice melt was dominated by brine, in 2013 it became close to zero. The amount of Pacific freshwater observed near Denmark Strait in 2013 is as large as the previous maximum in 1998. This, together with the decrease in meteoric water and brine, suggests a larger contribution from the Canadian Basin. We hypothesize that the increase of Pacific freshwater is the result of enhanced flux through Bering Strait and a shorter pathway of Pacific water through the interior Arctic to Fram Strait.
    Description: The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7 2007–2013) under grant agreement 308299, NACLIM Project, and from the U.S. National Science Foundation under grant OCE-085041.
    Description: 2015-10-01
    Keywords: East Greenland Current ; Freshwater ; Pacific Water ; Sea-ice melt ; Nordic Seas
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...