ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 98 (1993), S. 9410-9424 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A method for predicting splittings and shifts of bands in infrared spectra of small clusters of polyatomic molecules is presented. Based on an approach of early publications of Buckingham, the influence of the intermolecular forces on the vibrational energy levels of the constituent molecules is calculated using perturbation theory to second order. In order to describe the interaction of identical molecules, this ansatz is extended to also cover degenerate systems. In first order, a coupling of the vibrational modes of the interacting molecules occurs which leads to delocalized vibrations of all the molecules in the cluster. The second order correction of the vibrational excitation frequencies are found to be dominated by the intramolecular couplings of the normal modes due to the cubic anharmonicity of the force field. The procedures developed here are applied for the interpretation of vibrational photodissociation spectra of small methanol clusters in the region of the fundamental excitation frequency of the OH stretching mode (ν1, 3681.5 cm−1), the CH3 rocking mode (ν7, 1074.5 cm−1), and the CO stretching mode (ν8, 1033.5 cm−1). Using semiempirical models for the intermolecular potential functions, splittings and positions of the experimental bands can well be explained. The nonequivalent positions of the two molecules in the linear dimer structure give rise to two different absorption frequencies for each of the three modes of the donor and the acceptor molecule, respectively. The trimer and tetramer spectrum with only one absorption band are in agreement with the existence of symmetric planar ring structures (C3h and C4h) for these species. The pentamer spectrum which also consists of one band is explained by the occurrence of three closely spaced frequencies of an asymmetric ring. The double peak structure in the hexamer spectra can be attributed to a distorted ring structure of S6 symmetry, while the occurrence of other energetically near-degenerate isomers can be ruled out by means of their spectra.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 101 (1994), S. 6365-6366 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Based on structure calculations of small ethylene (C2H4)n clusters published previously [R. Alrichs et al., Z. Phys. D 15, 341 (1990)], shifts and splittings of the fundamental excitation frequency of the ν7 mode are calculated for the dimer, trimer, and tetramer. Using a first order perturbation approach, we find blue shifts in the order of 1–3 cm−1 which compare well with experimental findings. It is shown that the shifts are approximately independent of the cluster size and of the isomeric structure (ringlike or chainlike) of the ethylene complexes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 101 (1994), S. 343-355 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The role of solvent effects in association reactions is studied in atom-cluster collisions. Classical trajectory studies of the systems H+Cl(Ar)n (n=1,12) are used to investigate the influence of size, structure, and internal energy of the "microsolvation'' on the H+Cl association reaction. The following effects of solvating the chlorine in an Arn cluster are found. (1) In the H+ClAr system there is a large "third body'' effect. The single solvent atom stabilizes the newly formed HCl molecule by removing some of its excess energy. The cross section found at low energies is a substantial fraction of the gas-kinetic cross section. The molecule is produced in highly excited vibrational-rotational states. (2) Some production of long-lived HCl...Ar complexes, with lifetimes of 1 ps and larger, is found for the H+ClAr collisions. Weak coupling stemming from the geometry of the cluster is the cause for long life times. These resonance states decay into HCl+Ar. (3) At low collision energy (E=10 kJ/mol) for H+Cl(Ar)12, the H+Cl association shows a sharp threshold effect with cluster temperature. For temperatures T≥45 K the cluster is liquidlike, and the reaction probability is high. For T≤40 K the cluster is solidlike, and there is no reactivity. This suggests the potential use of reactions as a signature for the meltinglike transition in clusters. (4) At high collision energies (E=100 kJ/mol) H atoms can penetrate also the solidlike Cl(Ar)12 cluster. At this energy, the solid–liquid phase change is found not to increase the reaction probability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 5733-5743 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The Floquet-based quantum-classical Liouville equation (F-QCLE) is presented as a novel theoretical model for the interaction of molecules with intense laser pulses. This equation efficiently combines the following two approaches: First, a small but spectroscopically relevant part of the molecule is treated quantum-mechanically while the remaining degrees of freedom are modeled by means of classical molecular dynamics. The corresponding nonadiabatic dynamics is given by the quantum-classical Liouville equation which is a first-order approximation to the partial Wigner transform of full quantum dynamics. Second, the dynamics of the quantum subsystem is described in terms of instantaneous Floquet states thus eliminating highly oscillatory terms from the equations of motion. The resulting F-QCLE is shown to have a well defined adiabatic limit: For infinitely heavy classical particles and for infinitely slow modulation the dynamics adiabatically follows the Floquet quasi-energy surfaces for a strictly time-periodic field. Otherwise, nonadiabtic effects arise both from the motion of the classical particles and from the modulation of the field which is assumed to be much slower than the carrier frequency. A numerical scheme to solve the F-QCLE is based on a Trotter splitting of the time evolution. The simplest implementation can be realized by an ensemble of trajectories stochastically hopping between different Floquet surfaces. As a first application we demonstrate the excellent agreement of quantum-classical and fully quantum-mechanical dynamics for a two-state model of photodissociation of molecular fluorine. In summary, due to the favorable scaling of the numerical effort the F-QCLE provides an efficient tool for the simulation of medium to large molecules interacting with intense fields beyond the perturbative regime. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-01
    Description: Diffusion chronometry on zoned crystals allows constraining duration of magmatic evolution and storage of crystals once temperatures are precisely known. However, non-isothermal diffusion is common in natural samples, and thus timescales may not be determined with confidence while assuming isothermal conditions. The “non-isothermal diffusion incremental step (NIDIS) model” (Petrone et al. 2016) is proposed for such cases for a non-isothermal diffusive analysis. We conducted diffusion experiments with stepwise temperature changes to analyze and test the model, evaluated the associated errors and improved the accuracy by suggesting an alternative algorithm to model diffusion times. We used Cl and F (≤0.4 wt%) as the diffusing elements in nominally anhydrous (H2O ≤ 0.3 wt%) phonolitic melt with composition of Montana Blanca (Tenerife, Spain) in an experimental setup that successively generates multiple diffusive interfaces for different temperatures by adding glass blocks of different Cl and F concentrations. This compound set of two diffusion interfaces represents distinct compositional zones that diffusively interact at different temperatures, which can be taken as an equivalent to non-isothermal diffusion in zoned magmatic crystals. The starting temperature ranged from 975 to 1150 °C, and each set of experiments included a temperature change of 85–150 °C and a total duration of 8–12 h. The experiments were carried out in an internally heated pressure vessel equipped with a rapid quench device at 1 kbar pressure. Cl and F concentration profiles were obtained from the quenched samples by electron microprobe analysis. Although the estimated diffusion times from the NIDIS-model matched well with true experimental values, the errors on estimated timescales, due to errors in curve-fitting and uncertainty in temperature, were ±10–62% (1σ). The errors are much larger at 61–288% (1σ) when the uncertainty in diffusivity parameters is included. We discuss the efficiency and limitations of the model, assess the contribution from different sources of error, and their extent of propagation. A simpler alternative algorithm is proposed that reduces errors on the estimates of diffusion time to 10–32% (1σ) and 60–75% (1σ), with and without including uncertainty in diffusivity parameters, respectively. Using this new algorithm, we recalculated the individual diffusion times for the clinopyroxene crystals analyzed by Petrone et al. (2016) and obtained a significantly reduced error of 26–40% compared to the original error of 61–100%. We also analyzed a sanidine megacryst from Taapaca volcano (N. Chile) as a test case for non-isothermal modeling and obtained diffusion times of 1.5–9.4 ky, which is significantly different from isothermal analyses including a previous study on similar sample. In this analysis, the error estimated by our new method is reduced by 63–70%.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-11-18
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-04
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...