ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • North Slope  (1)
  • American Geophysical Union  (1)
  • American Association for the Advancement of Science
  • Institute of Physics
Collection
Publisher
  • American Geophysical Union  (1)
  • American Association for the Advancement of Science
  • Institute of Physics
Years
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124 (2019): 7201-7225, doi: 10.1029/2019JC015520.
    Description: The oceanographic response and atmospheric forcing associated with downwelling along the Alaskan Beaufort Sea shelf/slope is described using mooring data collected from August 2002 to September 2004, along with meteorological time series, satellite data, and reanalysis fields. In total, 55 downwelling events are identified with peak occurrence in July and August. Downwelling is initiated by cyclonic low‐pressure systems displacing the Beaufort High and driving westerly winds over the region. The shelfbreak jet responds by accelerating to the east, followed by a depression of isopycnals along the outer shelf and slope. The storms last 3.25 ± 1.80 days, at which point conditions relax toward their mean state. To determine the effect of sea ice on the oceanographic response, the storms are classified into four ice seasons: open water, partial ice, full ice, and fast ice (immobile). For a given wind strength, the largest response occurs during partial ice cover, while the most subdued response occurs in the fast ice season. Over the two‐year study period, the winds were strongest during the open water season; thus, the shelfbreak jet intensified the most during this period and the cross‐stream Ekman flow was largest. During downwelling, the cold water fluxed off the shelf ventilates the upper halocline of the Canada Basin. The storms approach the Beaufort Sea along three distinct pathways: a northerly route from the high Arctic, a westerly route from northern Siberia, and a southerly route from south of Bering Strait. Differences in the vertical structure of the storms are presented as well.
    Description: The authors thank Paula Fratantoni and Dan Torres for processing the moored profiler and ADCP data, respectively. Data from the SBI mooring array can be found at https://archive.eol.ucar.edu/projects/sbi/all_data.shtml. Funding for the analysis was provided by the following grants: National Science Foundation Grants OCE‐1259618 (N. F. and R. P.), OCE‐1756361 (N. F.), and PLR‐1504333 (N. F. and R. P.); National Oceanic and Atmospheric Administration Grant NA14‐OAR4320158 (R. P. and P. L.); and the Natural Sciences and Engineering Research Council of Canada (K. M.).
    Description: 2020-04-16
    Keywords: Downwelling ; Beaufort Sea ; Shelfbreak ; North Slope ; Arctic cyclone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...