ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymorphism, Single Nucleotide  (3)
  • American Association for the Advancement of Science (AAAS)  (2)
  • Nature Publishing Group (NPG)  (1)
  • American Association for the Advancement of Science
  • Oxford University Press
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (2)
  • Nature Publishing Group (NPG)  (1)
  • American Association for the Advancement of Science
  • Oxford University Press
Years
  • 1
    Publication Date: 2010-03-12
    Description: Domestic animals are excellent models for genetic studies of phenotypic evolution. They have evolved genetic adaptations to a new environment, the farm, and have been subjected to strong human-driven selection leading to remarkable phenotypic changes in morphology, physiology and behaviour. Identifying the genetic changes underlying these developments provides new insight into general mechanisms by which genetic variation shapes phenotypic diversity. Here we describe the use of massively parallel sequencing to identify selective sweeps of favourable alleles and candidate mutations that have had a prominent role in the domestication of chickens (Gallus gallus domesticus) and their subsequent specialization into broiler (meat-producing) and layer (egg-producing) chickens. We have generated 44.5-fold coverage of the chicken genome using pools of genomic DNA representing eight different populations of domestic chickens as well as red jungle fowl (Gallus gallus), the major wild ancestor. We report more than 7,000,000 single nucleotide polymorphisms, almost 1,300 deletions and a number of putative selective sweeps. One of the most striking selective sweeps found in all domestic chickens occurred at the locus for thyroid stimulating hormone receptor (TSHR), which has a pivotal role in metabolic regulation and photoperiod control of reproduction in vertebrates. Several of the selective sweeps detected in broilers overlapped genes associated with growth, appetite and metabolic regulation. We found little evidence that selection for loss-of-function mutations had a prominent role in chicken domestication, but we detected two deletions in coding sequences that we suggest are functionally important. This study has direct application to animal breeding and enhances the importance of the domestic chicken as a model organism for biomedical research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubin, Carl-Johan -- Zody, Michael C -- Eriksson, Jonas -- Meadows, Jennifer R S -- Sherwood, Ellen -- Webster, Matthew T -- Jiang, Lin -- Ingman, Max -- Sharpe, Ted -- Ka, Sojeong -- Hallbook, Finn -- Besnier, Francois -- Carlborg, Orjan -- Bed'hom, Bertrand -- Tixier-Boichard, Michele -- Jensen, Per -- Siegel, Paul -- Lindblad-Toh, Kerstin -- Andersson, Leif -- England -- Nature. 2010 Mar 25;464(7288):587-91. doi: 10.1038/nature08832. Epub 2010 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-75123 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20220755" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Evolution ; Chickens/*genetics ; Female ; Genetic Loci/*genetics ; Genome/*genetics ; Male ; Molecular Sequence Data ; Polymorphism, Single Nucleotide ; Selection, Genetic/*genetics ; Sequence Alignment ; Sequence Analysis, DNA ; Sequence Deletion
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-30
    Description: The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for the rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified more than 100 selective sweeps specific to domestic rabbits but only a relatively small number of fixed (or nearly fixed) single-nucleotide polymorphisms (SNPs) for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved noncoding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that because of a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few domestication loci.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carneiro, Miguel -- Rubin, Carl-Johan -- Di Palma, Federica -- Albert, Frank W -- Alfoldi, Jessica -- Barrio, Alvaro Martinez -- Pielberg, Gerli -- Rafati, Nima -- Sayyab, Shumaila -- Turner-Maier, Jason -- Younis, Shady -- Afonso, Sandra -- Aken, Bronwen -- Alves, Joel M -- Barrell, Daniel -- Bolet, Gerard -- Boucher, Samuel -- Burbano, Hernan A -- Campos, Rita -- Chang, Jean L -- Duranthon, Veronique -- Fontanesi, Luca -- Garreau, Herve -- Heiman, David -- Johnson, Jeremy -- Mage, Rose G -- Peng, Ze -- Queney, Guillaume -- Rogel-Gaillard, Claire -- Ruffier, Magali -- Searle, Steve -- Villafuerte, Rafael -- Xiong, Anqi -- Young, Sarah -- Forsberg-Nilsson, Karin -- Good, Jeffrey M -- Lander, Eric S -- Ferrand, Nuno -- Lindblad-Toh, Kerstin -- Andersson, Leif -- 095908/Wellcome Trust/United Kingdom -- U54 HG003067/HG/NHGRI NIH HHS/ -- WT095908/Wellcome Trust/United Kingdom -- WT098051/Wellcome Trust/United Kingdom -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1074-9. doi: 10.1126/science.1253714.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Universidade do Porto, 4485-661, Vairao, Portugal. ; Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. ; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. Vertebrate and Health Genomics, The Genome Analysis Centre, Norwich, UK. ; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. ; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden. ; Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. Department of Animal Production, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt. ; Wellcome Trust Sanger Institute, Hinxton, UK. European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Universidade do Porto, 4485-661, Vairao, Portugal. Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK. ; Institut National de la Recherche Agronomique (INRA), UMR1388 Genetique, Physiologie et Systemes d'Elevage, F-31326 Castanet-Tolosan, France. ; Labovet Conseil, BP539, 85505 Les Herbiers Cedex, France. ; INRA, UMR1198 Biologie du Developpement et Reproduction, F-78350 Jouy-en-Josas, France. ; Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy. ; Laboratory of Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA. ; U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA. ; ANTAGENE, Animal Genomics Laboratory, Lyon, France. ; INRA, UMR1313 Genetique Animale et Biologie Integrative, F- 78350, Jouy-en-Josas, France. ; Wellcome Trust Sanger Institute, Hinxton, UK. ; Instituto de Estudios Sociales Avanzados, (IESA-CSIC) Campo Santo de los Martires 7, Cordoba, Spain. ; Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden. ; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA. ; CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Universidade do Porto, 4485-661, Vairao, Portugal. Departamento de Biologia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre sn. 4169-007 Porto, Portugal. ; Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. kersli@broadinstitute.org leif.andersson@imbim.uu.se. ; Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden. Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA. kersli@broadinstitute.org leif.andersson@imbim.uu.se.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25170157" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/anatomy & histology/*genetics/psychology ; Animals, Wild/anatomy & histology/*genetics/psychology ; Base Sequence ; Behavior, Animal ; Breeding ; Evolution, Molecular ; Gene Frequency ; Genetic Loci ; Genome/genetics ; Molecular Sequence Data ; Phenotype ; Polymorphism, Single Nucleotide ; Rabbits/anatomy & histology/*genetics/psychology ; Selection, Genetic ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-09-13
    Description: Mexican and Peruvian hairless dogs and Chinese crested dogs are characterized by missing hair and teeth, a phenotype termed canine ectodermal dysplasia (CED). CED is inherited as a monogenic autosomal semidominant trait. With genomewide association analysis we mapped the CED mutation to a 102-kilo-base pair interval on chromosome 17. The associated interval contains a previously uncharacterized member of the forkhead box transcription factor family (FOXI3), which is specifically expressed in developing hair and teeth. Mutation analysis revealed a frameshift mutation within the FOXI3 coding sequence in hairless dogs. Thus, we have identified FOXI3 as a regulator of ectodermal development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drogemuller, Cord -- Karlsson, Elinor K -- Hytonen, Marjo K -- Perloski, Michele -- Dolf, Gaudenz -- Sainio, Kirsi -- Lohi, Hannes -- Lindblad-Toh, Kerstin -- Leeb, Tosso -- New York, N.Y. -- Science. 2008 Sep 12;321(5895):1462. doi: 10.1126/science.1162525.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Berne, 3001 Berne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18787161" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Chromosome Mapping ; Dog Diseases/*genetics ; Dogs/*genetics ; Ectoderm/*embryology/metabolism ; Ectodermal Dysplasia/genetics/*veterinary ; Ectodysplasins/metabolism ; Female ; Forkhead Transcription Factors/chemistry/*genetics/physiology ; *Frameshift Mutation ; Gene Duplication ; Hair/embryology/metabolism ; Haplotypes ; Male ; Mice ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/physiology ; Pedigree ; Polymorphism, Single Nucleotide ; Sequence Analysis, DNA ; Signal Transduction ; Tooth/embryology/metabolism ; Vibrissae/embryology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...