ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Sciences  (1)
  • University of Lisbon and the University of Évora  (1)
  • 1
    facet.materialart.
    Unknown
    University of Lisbon and the University of Évora
    In:  EPIC34th European Conference on Permafrost, Évora, Portugal, 2014-06-18-2014-06-21University of Lisbon and the University of Évora
    Publication Date: 2014-07-06
    Description: The intensity of thermo-erosion in the coastal zone of the Laptev Sea region mirrors the strong seasonality of exogenous hydro-meteorological conditions, mainly the presence or absence of sea ice and large temperature amplitudes. Permafrost, and in particular the widespread presence of syngenetic ground ice, both above and below sea level, constitute endogenous local conditions that make this coastline highly susceptible to currently observed warming and the associated extension of the open water season on the East Siberian arctic shelf. Although the general magnitude of erosion dynamics along Ice Complex coasts has been investigated, substantial information about local, regional, seasonal, and inter-annual variations still remain unknown. Monitoring capabilities could be increased by using the large areal coverage of historical records, accompanied by new acquisitions of contemporary high and very high resolution remote sensing data. Based on topographic reference measurements during field campaigns, we derived digital elevation models for subsequent orthorectification, in order to enable consistent distance and area measurements. A distinction was made between two related processes that work together, but with temporal and quantitative differences. Cliff top erosion (thermo-denudation) and cliff bottom erosion (thermo-abrasion) have different impacts on the volume of land loss and subsequent mass displacements. For a geographically broad baseline of well-distributed key areas, a proportional relationship of both processes on a multi-decadal long-term scale was observed, at site-specific average rates of -1.8 to -3.4 m/yr on Muostakh Island off the coast of Tiksi and along the continental coast of the Dmitriy Laptev Strait, respectively. However, short-term observations over the recent past revealed not only that erosion rates were 1.6 times more rapid on average, but also responded differently in terms of thermo-denudation and abrasion towards environmental forcings. This response was evaluated using the Normalized Difference Thermo-erosion Index (NDTI), whose value domain differentiates either marine or atmospherically driven erosion regimes, and may additionally indicate near-surface ground ice conditions. Seasonal observations on Muostakh, where the most rapid long-term rates of -9.6 m a-1 have been measured, revealed the existence of a thermo-erosional cycle, during which rates of either thermo-denudation or abrasion are overtaken by the respective opposite process. The frequency of this recurring pattern is also likely to have increased, at least since 2005, when the summer sea ice free period in the southern central Laptev Sea was above average and the sum of positive daily average surface air temperatures in Tiksi reached new all-time maxima. This is necessarily accompanied by larger short-term fluctuations of NDTI, causing coastal cliff morphologies to change more often, resulting in more effective volumetric erosion.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Sciences
    In:  EPIC3Polar Regions, Climate Change and Society - 28th International Polar Conference, Potsdam, 2022-05-02-2022-05-05Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Sciences
    Publication Date: 2022-10-04
    Description: Climate warming is particularly pronounced in the Arctic with temperatures rising twice as much as in the rest of the world. It seems natural that this warming has profound effects on the speed of erosion of Arctic coasts, since the majority consists of permafrost, composed of unlithified material and hold together by ice. Permafrost stores approximately 1307 Gt of carbon, which is almost 60 % more than currently being contained in the atmosphere. Understanding the main drivers and dynamics of permafrost coastal erosion is of global relevance, especially since floods and erosion are both projected to intensify. However, the assessment of the impacts of climate warming on Arctic coasts is impaired by little data availability. We reviewed relevant scientific literature on changing dynamics of Arctic coast, potential drivers of these changes and the impacts on the human and natural environment. We provide a comprehensive overview over the state of the art and share our thoughts on how we envision potential pathways of future Arctic coastal research. We found that the overwhelming majority of all studied Arctic coasts is erosive and that in most cases erosion rates per year are increasing, threatening coastal settlements, infrastructure, cultural sites and archaeological remains. The impacts on the natural environment are also manifold and reach from changing sediment fluxes which limit light availability in the water column to a higher input of carbon and nutrients into the nearshore zone with the potential to influence food chains.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...