ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alfred Wegener Institute for Polar and Marine Research  (1)
  • DGGV and DMG  (1)
  • International Glaciological Society  (1)
  • 1
    Publication Date: 2018-08-10
    Description: The MARUM-MeBo (abbreviation for Meeresboden-Bohrgerät, the German expression for seafloor drill rig) is a robotic drilling system that is developed since 2004 at the MARUM Center for Marine Environmental Sciences at the University of Bremen in close cooperation with Bauer Maschinen GmbH and other industry partners. The MARUM-MeBo drill rigs can be deployed from multipurpose research vessel like, RV MARIA S. MERIAN, RV METEOR, RV SONNE and RV POLARSTERN and are used for getting long cores both in soft sediments as well as hard rocks in the deep sea. The first generation drill rig, the MARUM-MeBo70 is dedicated for drilling depths of more than 70 m (Freudenthal and Wefer, 2013). Between 2005 and 2017 it was deployed on 18 research expeditions and drilled more than. 3 km into different types of lithologies including carbonate and crystalline rocks, gas hydrates, sands and gravel, glacial till and hemipelagic mud with an average recovery rate of 67 %. In February and March 2017 the MeBo70 was used on the West Antarctic continental shelf in the Amundsen Sea Embayment for the first time. The goal of the deployment on RV Polarstern expedition PS104 was to recover a series of sediment cores from different ages that will provide material for investigating the glaciation history of this area known as the most dynamic drainage area of the West Antarctic Ice Sheet. In this presentation we will focus on the operational experiences of this first deployment of a multi-barrel sea floor drill rig on the Antarctic continental shelf. References: Freudenthal, T and Wefer, G (2013) Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo. Geoscientific Instrumentation, Methods and Data Systems, 2(2). 329-337. doi:10.5194/gi-2-329-2013
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    International Glaciological Society
    In:  EPIC3International Symposium on Hydrology of Glaciers and Ice Sheets, Höfn, Island, 2015-06-21-2015-06-27London, International Glaciological Society
    Publication Date: 2018-08-10
    Description: Subglacial meltwater facilitates rapid ice flow beneath concurrent ice sheets, and there is widespread evidence for a dynamic subglacial water system beneath the Antarctic ice sheet. It steers and affects the pattern of ice flow and is a direct result from boundary processes acting at the base of the ice sheet, i.e. pressure-induced basal melting. Consequently, the occurrence of subglacial meltwater plays an important role in bedrock erosion, subsequent resedimentation, and in shaping the topography of ice-sheet beds. Here we present new geological and geochemical data from sediments recovered on the West Antarctic continental shelf in Pine Island Bay that we interpret as reliable indicators for deposition in a palaeo-subglacial lake beneath the formerly expanded West Antarctic ice sheet, presumably during or following the Last Glacial Maximum. Characteristic changes of sedimentary facies and geochemical profiles within these cores taken on RV Polarstern expeditions ANTXXIII/ 4 (2006) and ANT-XXVI/3 (2010) support the presence of an active subglacial lake system during the late stages of the last glacial period. These findings have important implications for palaeo ice-sheet dynamics, suggesting there was considerable water available to lubricate the bedrock–ice interface and deposit water-saturated subglacial sediments (soft tills). Based on our investigations performed so far, we suggest that the transition from subglacial lake to contact with the ocean took place in the early Holocene. During this time we speculate that the ice sheet thinned and successively transformed into an ice shelf with sub-ice cavities flushed by tidal currents. Based on bathymetric maps and relative sealevel curves we will aim to estimate ice thickness as the grounding line retreated across the subglacial lake threshold further inland. Our findings may also have implications for ice-sheet models, which have to consider the predominantly non-linear effects related to subglacial hydrology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-09-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...