ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media  (4)
  • COPERNICUS GESELLSCHAFT MBH  (2)
  • Alexander von Humboldt Foundation  (1)
  • 1
  • 2
  • 3
    Publication Date: 2021-03-25
    Description: The occurrence of snowpack features has been used in the past to classify environmental regimes on the polar ice sheets. Among these features are thin crusts with high density, which contribute to firn stratigraphy and can have significant impact on firn ventilation as well as on remotely inferred properties like accumulation rate or surface mass balance. The importance of crusts in polar snowpack has been acknowledged, but nonetheless little is known about their large-scale distribution. From snow profiles measured by means of microfocus X-ray computer tomography we created a unique dataset showing the spatial distribution of crusts in snow on the East Antarctic Plateau as well as in northern Greenland including a measure for their local variability. With this method, we are able to find also weak and oblique crusts, to count their frequency of occurrence and to measure the high-resolution density. Crusts are local features with a small spatial extent in the range of tens of meters. From several profiles per sampling site we are able to show a decreasing number of crusts in surface snow along a traverse on the East Antarctic Plateau. Combining samples from Antarctica and Greenland with a wide range of annual accumulation rate, we find a positive correlation (R2 = 0.89) between the logarithmic accumulation rate and crusts per annual layer in surface snow. By counting crusts in two Antarctic firn cores, we can show the preservation of crusts with depth and discuss their temporal variability as well as the sensitivity to accumulation rate. In local applications we test the robustness of crusts as a seasonal proxy in comparison to chemical records like impurities or stable water isotopes. While in regions with high accumulation rates the occurrence of crusts shows signs of seasonality, in low accumulation areas dating of the snowpack should be done using a combination of volumetric and stratigraphic elements. Our data can bring new insights for the study of firn permeability, improving of remote sensing signals or the development of new proxies in snow and firn core research.
    Electronic ISSN: 2296-6463
    Topics: Geosciences
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-14
    Description: Insoluble and soluble impurities, enclosed in polar ice sheets, have a major impact on the deformation behaviour of the ice. Macro- and Micro-scale deformation observed in ice sheets and ice cores has been retraced to chemical loads in the ice, even though the absolute concentration is negligible. And therefore the exact location of the impurities matters: Allocating impurities to specific locations inside the ice microstructure inherently determines the physical explanation of the observed interaction between chemical load and the deformational behaviour. Both, soluble and non-soluble impurities were located in grain boundaries, triple junctions or in the grain interior, using different methods, samples and theoretical approaches. While each of the observations is adding to the growing understanding of the effect of impurities in polar ice, the growing number of ambiguous results calls for a dedicated and holistic approach in assessing the findings. Thus, we here aim to give a state of the art overview of the development in microstructural impurity research over the last 20 years. We evaluate the used methods, discuss proposed deformation mechanisms and identify two main reasons for the observed ambiguity: 1) limitations and biases of measurement techniques and 2) the physical state of the analysed impurity. To overcome these obstacles we suggest possible approaches, such as the continuous analysis of impurities in deep ice cores with complementary methods, the implementation of these analyses into established in-situ ice core processing routines, a more holistic analysis of the microstructural location of impurities, and an enhanced knowledge-transfer via an open access data base.
    Electronic ISSN: 2296-6463
    Topics: Geosciences
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3The Cryosphere, COPERNICUS GESELLSCHAFT MBH, 14(11), pp. 3663-3685, ISSN: 1994-0416
    Publication Date: 2020-11-16
    Description: Surface mass balances of polar ice sheets are essential to estimate the contribution of ice sheets to sea level rise. Uncertain snow and firn densities lead to significant uncertainties in surface mass balances, especially in the interior regions of the ice sheets, such as the East Antarctic Plateau (EAP). Robust field measurements of surface snow density are sparse and challenging due to local noise. Here, we present a snow density dataset from an overland traverse in austral summer 2016/17 on the Dronning Maud Land plateau. The sampling strategy using 1 m carbon fiber tubes covered various spatial scales, as well as a high-resolution study in a trench at 79∘ S, 30∘ E. The 1 m snow density has been derived volumetrically, and vertical snow profiles have been measured using a core-scale microfocus X-ray computer tomograph. With an error of less than 2 %, our method provides higher precision than other sampling devices of smaller volume. With four spatially independent snow profiles per location, we reduce the local noise and derive a representative 1 m snow density with an error of the mean of less than 1.5 %. Assessing sampling methods used in previous studies, we find the highest horizontal variability in density in the upper 0.3 m and therefore recommend the 1 m snow density as a robust measure of surface snow density in future studies. The average 1 m snow density across the EAP is 355 kg m−3, which we identify as representative surface snow density between Kohnen Station and Dome Fuji. We cannot detect a temporal trend caused by the temperature increase over the last 2 decades. A difference of more than 10 % to the density of 320 kg m−3 suggested by a semiempirical firn model for the same region indicates the necessity for further calibration of surface snow density parameterizations. Our data provide a solid baseline for tuning the surface snow density parameterizations for regions with low accumulation and low temperatures like the EAP.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Alexander von Humboldt Foundation
    In:  EPIC32nd Japanese-American-German Frontiers of Science Symposium, Kyoto, Japan, 2019-09-26-2019-09-29Kyoto, Alexander von Humboldt Foundation
    Publication Date: 2019-11-11
    Description: The pollution input in polar ice sheets in Greenland and Antarctica is of atmospheric aeolian origin, just as all natural non-ice impurities as well. They thus provide potential information on the evolution of the atmospheric share of pollutants in the ocean. Aerosols found in ice are transported with atmospheric circulation and wind patterns and are deposited e.g. with precipitating snow. The impurity content in this so-called meteoric ice is relatively low compared to many other natural materials such as rocks (ppb to ppm range). The reason is that most aerosols in the atmosphere have been removed by fall-out or precipitation during transport from the impurities’ sources to the remote ice sheet. Non-ice constituents in polar ice cores have been studied in the last decades mainly for reconstructions of past atmospheric aerosol concentrations, with respect to questions conceding the global climate change. The fastest and easiest analytical way is chemical analysis of the melted water from ice cores. However despite the tiny concentrations, the interactions with and effects of impurities in the solid ice influence the physical properties of the material as a whole: e.g. electric as well as dielectric response and, in particular, mechanical behaviour thus “softness” of the material seems to be strongly controlled by impurities. Smaller concentrations of impurities (up to a few ‰) do soften the material as a whole, while larger concentrations of particles harden it, depending on the type of impurities of course. The underlying processes are partly hypothesised for decades, but not yet proven or understood satisfactorily as the quest for ppb to ppm concentrations in solid matrix material is a search for a “needle in a haystack”. To improve the data basis regarding the in-situ form of incorporation and spatial distribution of impurities in ice we used micro-cryo-Raman spectroscopy to identify the location, phase and composition of micrometer-sized inclusions in natural ice samples (NEEM ice core from Greenland and EPICA-DML ice core from Antarctica). The combination of Raman results with ice-microsctructure measurements and complementary impurity data provided by the standard analytical methods (IC, CFA, and DEP) allows for a more interdisciplinary approach interconnecting ice core chemistry and ice core physics. While the samples originating from interglacial times were dominated by sulfate salts—mainly gypsum, sodium sulfate (possibly thenardite) and iron–potassium sulfate (likely jarosite)—the glacial ice contained high numbers of mineral dust particles—in particular quartz, mica, feldspar, anatase, hematite and carbonaceous particles (black carbon). We cannot confirm cumulation of impurities in the grain boundary network as reported by other studies, neither micro-particles being dragged by migrating grain boundaries nor in form of liquid veins in triple junctions. We argue that mixing of impurities on the millimeter scale and chemical reactions are facilitated by the deforming ice matrix. Refs.: doi: 10.5194/tc-11-1075-2017 doi: 10.3389/feart.2019.00020 https://www.humboldt-foundation.de/web/trilateral-jagfos-2019.html http://www.nasonline.org/programs/kavli-frontiers-of-science/past-symposia/2019-jagfos.html Invited poster.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-04
    Description: Impurities deposited in polar ice enable the re- construction of the atmospheric aerosol concentration of the past. At the same time they impact the physical properties of the ice itself such as its deformation behaviour. Impurities are thought to enhance ice deformation, but observations are ambiguous due to a shortage of comprehensive microstructural analyses. For the first time, we systematically analyse micro-inclusions in polar fast flowing ice, i.e. from the East Greenland Ice Core Project ice core drilled through the Northeast Greenland Ice Stream. In direct relation to the inclusions we derive the crystal preferred orientation, fabric, grain size, and microstructural features at 10 depths, covering the Holocene and Late Glacial. We use optical microscopy to create microstructure maps to analyse the in situ locations of inclusions in the polycrystalline, solid ice samples. Micro- inclusions are more variable in spatial distribution than previously observed and show various distributional patterns ranging from centimetre-thick layers to clusters and solitary particles, independent of depth. In half of all samples, micro-inclusions are more often located at or close to the grain boundaries by a slight margin (in the areas occupied by grain boundaries). Throughout all samples we find strong in- dications of dynamic recrystallisation, such as grain islands, bulging grains, and different types of sub-grain boundaries. We discuss the spatial variability in micro-inclusions, the link between spatial variability and mineralogy, and possible ef- fects on the microstructure and deformation behaviour of the ice. Our results emphasise the need for holistic approaches in future studies, combining microstructure and impurity analysis.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...