ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 60 (5). pp. 1619-1633.
    Publication Date: 2018-06-20
    Description: We present the first set of dissolved silicon isotope data in seawater (delta Si-30(Si(OH)4)) from the East China Sea, a large and productive marginal sea significantly influenced by the Kuroshio Current and freshwater inputs from the Changjiang (Yangtze River). In summer (August 2009), the lowest surface delta Si-30(Si(OH)4) signatures of +2.1 parts per thousand corresponding to the highest Si(OH)(4) concentrations (similar to 30.0 mu mol L-1) were observed nearshore in Changjiang Diluted Water. During advection on the East China Sea inner shelf, surface delta Si-30(Si(OH)4) increased rapidly to +3.2 parts per thousand while Si(OH)(4) became depleted, indicating increasing biological utilization of the Si(OH)(4) originating from the Changjiang Diluted Water. This is also reflected in the water column profiles characterized by a general decrease of delta Si-30(Si(OH)4) and an increase of Si(OH)(4) with depth on the East China Sea mid-shelf and slope. In winter (December 2009-January 2010), however, the delta Si-30(Si(OH)4) was nearly constant at +1.9 parts per thousand throughout the water column on the East China Sea shelf beyond the nearshore, which was a consequence of enhanced vertical mixing of the Kuroshio subsurface water. Horizontal admixture of Kuroshio surface water, which is highly fractionated in Si isotopes, was observed only beyond the shelf break. Significant seasonal differences in delta Si-30(Si(OH)4) were detected in the surface waters beyond the Changjiang Diluted Water-influenced region on the East China Sea shelf, where the winter values were similar to 1.0 parts per thousand lower than those in summer, despite the same primary Si(OH)(4) supply from the Kuroshio subsurface water during both seasons. This demonstrates significantly higher biological consumption and utilization of Si(OH)(4) in summer than in winter.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Nutrients limiting phytoplankton growth in the ocean are a critical control on ocean productivity and can underpin predicted responses to climate change. The extensive western subtropical North Pacific is assumed to be under strong nitrogen limitation, but this is not well supported by experimental evidence. Here, we report the results of 14 factorial nitrogen–phosphorus–iron addition experiments through the Philippine Sea, which demonstrate a gradient from nitrogen limitation in the north to nitrogen–iron co-limitation in the south. While nitrogen limited sites responded weakly to nutrient supply, co-limited sites bloomed with up to ~60-fold increases in chlorophyll a biomass that was dominated by initially undetectable diatoms. The transition in limiting nutrients and phytoplankton growth capacity was driven by a gradient in deep water nutrient supply, which was undetectable in surface concentration fields. We hypothesize that this large-scale phytoplankton response gradient is both climate sensitive and potentially important for regulating the distribution of predatory fish.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: Nutrient transfer into the sunlit surface ocean by cyclonic eddies is potentially crucial for sustaining primary productivity in the stratified subtropical gyres. However, the nature of productivity enhancements, including the flow of matter to higher trophic levels and its impact on carbon fluxes, remain poorly resolved. Here, we report a detailed assessment of the biogeochemical response to a cyclonic eddy in the subtropical Northwest Pacific via a combination of ship‐based and autonomous platforms. Primary production was enhanced twofold within the eddy core relative to reference sites outside, whereas phytoplankton biomass even decreased. Pico‐phytoplankton (〈 2 μ m) dominated (〉 80%) both phytoplankton biomass and primary production inside and outside the eddy. The stimulated primary production in the eddy core was accompanied by an approximately twofold increase in mesozooplankton abundance, an approximately threefold increase in particle formation in the deep chlorophyll maximum layer, as well as significantly enhanced surface oceanic CO 2 uptake and net community production. We suggest these observations carry important implications for understanding carbon export in the subtropical ocean and highlight the need to include such subtropical eddy features in ocean carbon budget analyses.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...