ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (122)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (2)
  • American Society for Microbiology
  • CSIRO
Collection
Keywords
Years
  • 1
    Publication Date: 2019-08-06
    Description: Ocean acidification has direct physiological effects on organisms, for example by dissolving the calcium carbonate structures of calcifying species. However, non-calcifiers may also be affected by changes in seawater chemistry. To disentangle the direct and indirect effects of ocean acidification on zooplankton growth, we undertook a study with two model organisms. Specifically, we investigated the individual effects of short-term exposure to high and low seawater pCO2, and different phytoplankton qualities as a result of different CO2 incubations on the growth of a heterotrophic dinoflagellate (Oxyrrhis marina) and a copepod species (Acartia tonsa). It was observed previously that higher CO2 concentrations can decrease phytoplankton food quality in terms of carbon : nutrient ratios. We therefore expected both seawater pCO2 (pH) and phytoplankton quality to result in decreased zooplankton growth. Although we expected lowest growth rates for all zooplankton under high seawater pCO2 and low algal quality, we found that direct pH effects on consumers seem to be of lesser importance than the associated decrease in algal quality. The decrease in the quality of primary producers under high pCO2 conditions negatively affected zooplankton growth, which may lead to lower availability of food for the next trophic level and thus potentially affect the recruitment of higher trophic levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 52 . pp. 2062-2071.
    Publication Date: 2019-09-23
    Description: We investigated whether nutrient limitations of primary producers act upward through food webs only in terms of density effects or if there is a second pathway for nutrient limitation signals channelled upward to higher trophic levels. We used tritrophic food chains to assess the effects of nutrient-limited phytoplankters (the cryptophyte Rhodomonas salina) on herbivorous zooplankters (the calanoid copepod Acartia tonsa) and finally zooplanktivores (larval herring Clupea harengus) living on the herbivores. The primary producers� food quality had a significant effect on fish condition. Our experimental phosphorus-limited food chain resulted in larval fish with a significantly poorer condition than their counterparts reared under nitrogen-limited or nutrient-sufficient conditions. Our results show that mineral nutrient requirements of consumers have to be satisfied first before fatty acids can promote further growth. This challenges the match/mismatch hypothesis, which links larval fish survival probability solely to prey availability, and could imply that reduced nutrient releases into the environment may affect fish stocks even more severely than previously believed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Phytoplankton stand at the base of the marine food-web, and play a major role in global carbon cycling. Rising CO2 levels and temperatures are expected to enhance growth and alter carbon:nutrient stoichiometry of marine phytoplankton, with possible consequences for the functioning of marine food-webs and the oceanic carbon pump. To date, however, the consistency of phytoplankton stoichiometric responses remains unclear. We therefore performed a meta-analysis on data from experimental studies on stoichiometric responses of marine phytoplankton to elevated pCO2 and 3–5° warming under nutrient replete and limited conditions. Our results demonstrate that elevated pCO2 increased overall phytoplankton C:N (by 4%) and C:P (by 9%) molar ratios under nutrient replete conditions, as well as phytoplankton growth rates (by 6%). Nutrient limitation amplified the CO2 effect on C:N and C:P ratios, with increases to 27% and 17%, respectively. In contrast to elevated pCO2, warming did not consistently alter phytoplankton elemental composition. This could be attributed to species- and study-specific increases and decreases in stoichiometry in response to warming. While our observed moderate CO2-driven changes in stoichiometry are not likely to drive marked changes in food web functioning, they are in the same order of magnitude as current and projected estimations of oceanic carbon export. Therefore, our results may indicate a stoichiometric compensation mechanism for reduced oceanic carbon export due to declining primary production in the near future
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-16
    Description: Swimming speed of two phytoplankton species, Rhodomonas salina and Teleaulax sp., grown in nutrient replete F/2 medium and in P-limited conditions, as well as swimming speed of the heterotrophic dinoflagellate Oxyrrhis marina either starved or fed with these four types of phytoplankton individually. In addition to the different culture and feeding conditions, the phytoplankton and dinoflagellates were incubated with the water from differently cultured organisms.
    Keywords: Method comment; Species; Speed, swimming; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 11288 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-24
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Cell, diameter; Cell biovolume; Cell size; Taxon/taxa
    Type: Dataset
    Format: text/tab-separated-values, 620 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-13
    Description: This dataset comprises data from two experiments analysed with two different tools, a FlowCam and a microscope. The heterotrophic dinoflagellate Oxyrrhis marina was subjected to different feeding treatments (starved, or fed with either F/2 nutrient reach, nitrogen-limited, or phosphorus-limited phytoplankton of the species Rhodomonas salina). The carbon:nitrogen:phosphorus stoichiometry of the different phytoplankton and dinoflagellate cultures was measured. The nitrogen-limited and phosphorus-limited phytoplankton were mixed and the mixture was offered as food to the dinoflagellates previously fed on either nitrogen-limited, or phosphorus-limited phytoplankton. The selective feeding of the dinoflagellate on the two mixed algal qualities was measured.
    Keywords: FlowCam; Nitrogen; Phosphorus; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 90 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-24
    Description: This dataset comprises data from two experiments analysed with two different tools, a FlowCam and a microscope. The heterotrophic dinoflagellate Oxyrrhis marina was subjected to different feeding treatments (starved, or fed with either F/2 nutrient reach, nitrogen-limited, or phosphorus-limited phytoplankton of the species Rhodomonas salina). The carbon:nitrogen:phosphorus stoichiometry of the different phytoplankton and dinoflagellate cultures was measured. The nitrogen-limited and phosphorus-limited phytoplankton were mixed and the mixture was offered as food to the dinoflagellates previously fed on either nitrogen-limited, or phosphorus-limited phytoplankton. The selective feeding of the dinoflagellate on the two mixed algal qualities was measured.
    Keywords: Cell density; Microscopy; Replicate; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 80 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute - Biological Institute Helgoland | Supplement to: Algueró-Muñiz, Maria; Meunier, Cédric Léo; Holst, Sabine; Alvarez-Fernandez, Santiago; Boersma, Maarten (2016): Withstanding multiple stressors: ephyrae of the moon jellyfish (Aurelia aurita, Scyphozoa) in a high-temperature, high-CO2 and low-oxygen environment. Marine Biology, 163(9), https://doi.org/10.1007/s00227-016-2958-z
    Publication Date: 2023-02-24
    Description: Global change is affecting marine ecosystems through a combination of different stressors such as warming, ocean acidification and oxygen depletion. Very little is known about the interactions among these factors, especially with respect to gelatinous zooplankton. Therefore, in this study we investigated the direct effects of pH, temperature and oxygen availability on the moon jellyfish Aurelia aurita, concentrating on the ephyral life stage. Starved one-day-old ephyrae were exposed to a range of pCO2 (400-4000 ppm) and three different dissolved oxygen levels (from saturated to hypoxic conditions), in two different temperatures (5 and 15 °C) for 7 days. Carbon content and swimming activity were analysed at the end of the incubation period, and mortality noted. General linearized models were fitted through the data, with the best fitting models including two- and three-way interactions between pCO2, temperature and oxygen concentration. The combined effect of the stressors was small but significant, with the clearest negative effect on growth caused by the combination of all three stressors present (high temperature, high CO2, low oxygen). We conclude that A. aurita ephyrae are robust and that they are not likely to suffer from these environmental stressors in a near future.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Horn, Henriette G; Boersma, Maarten; Garzke, Jessica; Löder, Martin G J; Sommer, Ulrich; Aberle, Nicole (2016): Effects of high CO2 and warming on a Baltic Sea microzooplankton community. ICES Journal of Marine Science, 73, 772-782, https://doi.org/10.1093/icesjms/fsv198
    Publication Date: 2023-02-24
    Description: Global warming and ocean acidification are among the most important stressors for aquatic ecosystems in the future. To investigate their direct and indirect effects on a near-natural plankton community, a multiple-stressor approach is needed. Hence, we set up mesocosms in a full-factorial design to study the effects of both warming and high CO2 on a Baltic Sea autumn plankton community, concentrating on the impacts on microzooplankton (MZP). MZP abundance, biomass, and species composition were analysed over the course of the experiment. We observed that warming led to a reduced time-lag between the phytoplankton bloom and an MZP biomass maximum. MZP showed a significantly higher growth rate and an earlier biomass peak in the warm treatments while the biomass maximum was not affected. Increased pCO2 did not result in any significant effects on MZP biomass, growth rate, or species composition irrespective of the temperature, nor did we observe any significant interactions between CO2 and temperature. We attribute this to the high tolerance of this estuarine plankton community to fluctuations in pCO2, often resulting in CO2 concentrations higher than the predicted end-of-century concentration for open oceans. In contrast, warming can be expected to directly affect MZP and strengthen its coupling with phytoplankton by enhancing its grazing pressure.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schoo, Katherina L; Malzahn, Arne; Krause, Evamaria; Boersma, Maarten (2013): Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore. Marine Biology, 160, 2145-2155, https://doi.org/10.1007/s00227-012-2121-4
    Publication Date: 2023-02-24
    Description: Rising levels of CO2 in the atmosphere have led to increased CO2 concentrations in the oceans. This enhanced carbon availability to the marine primary producers has the potential to change their nutrient stoichiometry, and higher carbon to nutrient ratios are expected. As a result, the quality of the primary producers as food for herbivores may change. Here, we present experimental work showing the effect of feeding Rhodomonas salina grown under different pCO2 (200, 400 and 800 µatm) on the copepod Acartia tonsa. The rate of development of copepodites decreased with increasing CO2 availability to the algae. The surplus carbon in the algae was excreted by the copepods, with younger stages (copepodites) excreting most of their surplus carbon through respiration, and adult copepods excreting surplus carbon mostly as DOC. We consider the possible consequences of different excretory pathways for the ecosystem. A continued increase in the CO2 availability for primary production, together with changes in the nutrient loading of coastal ecosystems, may cause changes in the trophic links between primary producers and herbivores.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...